University of California, Los Angeles **Department of Statistics**

Statistics 100B

Instructor: Nicolas Christou

Homework 8

EXERCISE 1

Let X_1, \ldots, X_n be i.i.d. random variables with $X_i \sim N(\mu, \sigma)$. Answer the following questions:

- a. Verify that $\hat{\theta} = \bar{X}S^2$ is an unbiased estimator of $\theta = \mu\sigma^2$. Find the variance of $\hat{\theta}$.
- b. Find an unbiased estimator of $\theta = \frac{\mu}{\sigma^2}$. Find the variance of this estimator.

EXERCISE 2

Let X_1, \ldots, X_n be i.i.d. from $N(\theta, 1)$ and let U_1, \ldots, U_n be i.i.d. from U(0, 1). All the 2nrandom variables are independent. Let $Y_i = X_i U_i$, i = 1, ..., n. If the X_i and U_i are both observed, then \bar{X} would be a natural estimator for θ . If only the products Y_1, \ldots, Y_n are observed, then $2\bar{Y}$ may be a reasonable estimator for θ . Are the two estimators unbiased? Determine the relative efficiency of $2\overline{Y}$ with respect to X. Which estimator is more efficient?

EXERCISE 3

Let X_1, \ldots, X_n be i.i.d. $N(0, \sigma)$. Show that $\hat{\theta} = \frac{C}{n} \sum_{i=1}^n \sqrt{X_i^2}$ is a consistent estimator of σ if and only if $C = \sqrt{\frac{\pi}{2}}$. Show that the MLE of σ is given by $\hat{\sigma} = \sqrt{\frac{1}{n} \sum_{i=1}^{n} X_i^2}$ and determine the asymptotic relative efficiency of $\hat{\theta}$ with $C = \sqrt{\frac{\pi}{2}}$ compared to $\hat{\sigma}$ the MLE of σ . Hint: Use the asymptotic efficiency of maximum likelihood estimates.

EXERCISE 4

Let X_1, \ldots, X_m be i.i.d. random variables from an exponential distribution with parameter λ_x and Y_1, \ldots, Y_n be i.i.d. random variables from an exponential distribution with parameter λ_{y} . The two samples are independent. Answer the following questions.

- a. Find an unbiased estimator of the ratio $\frac{\lambda_x}{\lambda_y}$. Your answer should be a function of $\sum_{i=1}^{m} X_i$ and $\sum_{i=1}^{n} Y_i$.
- b. Use MSE to find the best estimator of $\frac{\lambda_x}{\lambda_y}$ of the form $\hat{\delta} = c \frac{\bar{Y}}{\bar{X}}$.

EXERCISE 5

Let X_1, \ldots, X_n be i.i.d. Poisson random variables with parameter λ . Use the definition of sufficiency to show that $\sum_{i=1}^{n} X_i$ is a sufficient statistic for λ .

EXERCISE 6

Let X_1, \ldots, X_n be i.i.d. random variables with $f(x) = \frac{2x}{\theta} e^{-\frac{x^2}{\theta}}, x > 0$. Use the factorization theorem to show that $\sum_{i=1}^n X_i^2$ is a sufficient statistic for θ .