University of California, Los Angeles
 Department of Statistics

Homework 8

EXERCISE 1

Let X_{1}, \ldots, X_{n} be i.i.d. random variables with $X_{i} \sim N(\mu, \sigma)$. Answer the following questions:
a. Verify that $\hat{\theta}=\bar{X} S^{2}$ is an unbiased estimator of $\theta=\mu \sigma^{2}$. Find the variance of $\hat{\theta}$.
b. Find an unbiased estimator of $\theta=\frac{\mu}{\sigma^{2}}$. Find the variance of this estimator.

EXERCISE 2

Let X_{1}, \ldots, X_{n} be i.i.d. from $N(\theta, 1)$ and let U_{1}, \ldots, U_{n} be i.i.d. from $U(0,1)$. All the $2 n$ random variables are independent. Let $Y_{i}=X_{i} U_{i}, i=1, \ldots, n$. If the X_{i} and U_{i} are both observed, then \bar{X} would be a natural estimator for θ. If only the products Y_{1}, \ldots, Y_{n} are observed, then $2 \bar{Y}$ may be a reasonable estimator for θ. Are the two estimators unbiased? Determine the relative efficiency of $2 \bar{Y}$ with respect to \bar{X}. Which estimator is more efficient?

EXERCISE 3

Let X_{1}, \ldots, X_{n} be i.i.d. $N(0, \sigma)$. Show that $\hat{\theta}=\frac{C}{n} \sum_{i=1}^{n} \sqrt{X_{i}^{2}}$ is a consistent estimator of σ if and only if $C=\sqrt{\frac{\pi}{2}}$. Show that the MLE of σ is given by $\hat{\sigma}=\sqrt{\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2}}$ and determine the asymptotic relative efficiency of $\hat{\theta}$ with $C=\sqrt{\frac{\pi}{2}}$ compared to $\hat{\sigma}$ the MLE of σ. Hint: Use the asymptotic efficiency of maximum likelihood estimates.

EXERCISE 4
Let X_{1}, \ldots, X_{m} be i.i.d. random variables from an exponential distribution with parameter λ_{x} and Y_{1}, \ldots, Y_{n} be i.i.d. random variables from an exponential distribution with parameter λ_{y}. The two samples are independent. Answer the following questions.
a. Find an unbiased estimator of the ratio $\frac{\lambda_{x}}{\lambda_{y}}$. Your answer should be a function of $\sum_{i=1}^{m} X_{i}$ and $\sum_{i=1}^{n} Y_{i}$.
b. Use MSE to find the best estimator of $\frac{\lambda_{x}}{\lambda_{y}}$ of the form $\hat{\delta}=c \frac{\bar{Y}}{\bar{X}}$.

EXERCISE 5

Let X_{1}, \ldots, X_{n} be i.i.d. Poisson random variables with parameter λ. Use the definition of sufficiency to show that $\sum_{i=1}^{n} X_{i}$ is a sufficient statistic for λ.

EXERCISE 6

Let X_{1}, \ldots, X_{n} be i.i.d. random variables with $f(x)=\frac{2 x}{\theta} e^{-\frac{x^{2}}{\theta}}, x>0$. Use the factorization theorem to show that $\sum_{i=1}^{n} X_{i}^{2}$ is a sufficient statistic for θ.

