University of California, Los Angeles Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Homework 9

Answer the following questions:

- a. Suppose that two independent random samples of n_1 and n_2 observations are selected from normal populations with means μ_1, μ_2 and variances σ_1^2, σ_2^2 respectively. Find a confidence interval for the variance ratio $\frac{\sigma_1^2}{\sigma_2^2}$ with confidence level 1α .
- b. The sample mean \bar{X} is a good estimator of the population mean μ . It can also be used to predict a future value of X independently selected from the population. Assume that you have a sample mean \bar{x} and a sample variance s^2 , based on a random sample of n measurements from a normal population. Construct a prediction interval for a new observation x, say x_p . Use 1α confidence level. Hint: Start with $X_p \bar{X}$ and then use t distribution.
- c. (from Mathematical Statistics and Data Analysis), by J. Rice, 2nd Edition. In a study done at the National Institute of Science and Technology (Steel et al. 1980), asbestos fibers on filters were counted as part of a project to develop measurement standards for asbestos concentration. Asbestos dissolved in water was spread on a filter, and punches of 3-mm diameter were taken from the filter and mounted on a transmission electron microscope. An operator counted the number of fibers in each of 23 grid squares, yielding the following counts:
 - 2831291918312718343430 162727242226182824211724

Assume that the Poisson distribution with unknown parameter λ would be a plausible model for describing the variability from grid square to grid square in this situation.

- a. Use the method of maximum likelihood to estimate the parameter λ .
- b. Use the asymptotic properties of the maximum likelihood estimates to construct a 95% confidence interval for λ . As a reminder, for large samples the distribution of $\frac{\hat{\theta}-\theta}{\sqrt{\frac{1}{nI(\theta)}}}$ is approximately standard normal, where $I(\theta)$ is the Fisher information.
- d. Let X_1, X_2, \dots, X_9 and Y_1, Y_2, \dots, Y_{12} represent two independent random samples from the respective normal distributions $N(\mu_1, \sigma_1)$ and $N(\mu_2, \sigma_2)$. It is given that $\sigma_1^2 = 3\sigma_2^2$, but σ_2^2 is unknown. Define a random variable which has a t distribution and use it to find a 95% confidence interval for $\mu_1 \mu_2$.
- e. Suppose that a simple linear regression of miles per gallon (Y) on car weight (x) has been performed on 32 observations. The least squares estimates are $\hat{\beta}_0 = 68.17$ and $\hat{\beta}_1 = -1.112$, with $s_e = 4.281$. Other useful information: $\bar{x} = 30.91$ and $\sum_{i=1}^{32} (x_i - \bar{x})^2 = 2054.8$. Answer the following questions:
 - a. Construct a 95% confidence interval for β_1 .
 - b. Construct a 95% confidence interval for σ^2 .
 - c. Construct a confidence interval for $3\beta_0 2\beta_1 50$.
- f. Consider the simple regression model $y_i = \beta_0 + \beta_1 x_1 + \epsilon_i$. The Gauss-Markov conditions hold and also $\epsilon_i \sim N(0, \sigma)$. Construct a prediction interval for the average of m new observations of Y for a given new $x = x_0$.