Answer the following questions:

a. Let \(X_1, X_2, \ldots, X_n \) be i.i.d. \(\text{Poisson}(\lambda) \) and let \(\bar{X} \) and \(S^2 \) be the sample mean and sample variance respectively. Each one of these two estimators has expected value equal to \(\lambda \) (why?). Which estimator is better? Hint: The answer should be: “\(\bar{X} \) is at least as good as \(S^2 \)”. Explain why by finding the Rao-Cramér lower bound of an unbiased estimator of \(\lambda \).

b. Let \(X_1, \ldots, X_n \) be i.i.d. \(\text{N}(\theta, \theta) \), \(\theta > 0 \). For this model both \(\bar{X} \) and \(cS \) are unbiased estimators of \(\theta \), where \(c = \frac{\sqrt{n-1} \Gamma\left(\frac{n-1}{2}\right)}{\sqrt{2 \Gamma\left(\frac{n}{2}\right)}} \). Show that for any \(\alpha \) the estimator \(\alpha \bar{X} + (1 - \alpha)cS \) is also unbiased estimator of \(\theta \). For what value of \(\alpha \) this estimator has the minimum variance?

c. Let \(X_1, \ldots, X_n \) be i.i.d. random variables with \(X_i \sim \text{Gamma}(\alpha, \beta) \) with \(\alpha \) known. Find an unbiased estimator of \(\frac{1}{\beta} \). (Find \(E\bar{X} \) and then adjust it to be unbiased of \(\frac{1}{\beta} \).)

d. Let \(X_1, \ldots, X_n \) be i.i.d. random variables with \(X_i \sim \text{Gamma}(\alpha, \beta) \) with \(\alpha \) known. Is \(\hat{\beta} = \frac{\bar{X}}{\alpha} \) efficient estimator of \(\beta \)?