Hypothesis testing

• A hypothesis test is a claim about a parameter of a population.

• Given the data we want to make a decision about which of two hypothesis is true (or not true).

• The two hypotheses are called the “null” and “alternative” hypotheses (denoted with H_0 and H_a respectively).

• The test has the following formulation:
 $H_0: \theta \in \Theta_0$
 $H_a: \theta \in \Theta'_0$, where Θ'_0 is the complement of Θ_0.

• Examples:
 1. Consider the simple regression model: $y_i = \beta_0 + \beta x_i + \epsilon_i$. We wish to test
 $H_0: \beta_1 = 0$ (the null hypothesis states that there is no association between the response y and the predictor x).
 $H_a: \beta_1 \neq 0$ (the alternative hypothesis states that there is a linear association between y and x).
 2. Consider an experiment in which a patient is given a treatment (some drug) and we want to test if there is a difference between before and after administrating the drug. We wish to test
 $H_0: \mu_d = 0$ (the null hypothesis states that there is no difference).
 $H_a: \mu_d \neq 0$ (the alternative hypothesis states that there is a difference).
 3. Consider an experiment where the goal is to see if on average there is a difference in the production of corn using different fertilizers. We wish to test
 $H_0: \mu_1 = \mu_2 = \ldots = \mu_k$ (the null hypothesis states that the production is the same under the different fertilizers (treatments)).
 $H_a: \text{At least two means are not equal}$ (the alternative hypothesis states that there are differences).
 4. Test for the proportion of defective items at a certain production line:
 $H_0: p = p_0$
 $H_A: p > p_0$.
• We need to find and evaluate hypothesis tests.

• Find a procedure that will tell us for which sample values H_0 is accepted (and therefore for which sample values H_0 is rejected). These are called the acceptance region (accepts H_0) and the rejection region (rejects H_0).

• Usually the procedure of rejecting (or accepting) involves the so called test statistic $T(X)$ which a function of the data $X = (X_1, \ldots, X_n)'$.

• Type I and Type II error

<table>
<thead>
<tr>
<th>STATISTICAL DECISION</th>
<th>ACTUAL SITUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H_0 IS TRUE</td>
</tr>
<tr>
<td>DO NOT REJECT H_0</td>
<td>Correct Decision</td>
</tr>
<tr>
<td></td>
<td>$1 - \alpha$</td>
</tr>
<tr>
<td>REJECT H_0</td>
<td>Type I Error</td>
</tr>
<tr>
<td></td>
<td>α</td>
</tr>
</tbody>
</table>

• Testing a simple hypothesis, i.e. $H_0 : \theta = \theta'$ against $H_a : \theta = \theta''$.

1. Best critical region of size α.
 Definition: Let R denote a subset of the sample space. Then R is called “best critical region” of size α for testing the simple hypothesis $H_0 : \theta = \theta'$ against $H_a : \theta = \theta''$ if for every subset D of the sample space for which $P[(X_1, \ldots, X_n) \in D|H_0] = \alpha$ it is true that
 a. $P[(X_1, \ldots, X_n) \in R|H_0] = \alpha$.
 b. $P[(X_1, \ldots, X_n) \in R|H_0] \geq P[(X_1, \ldots, X_n) \in D|H_0]$.
 Explanation:
 In general, there are many subsets D for which $P[(X_1, \ldots, X_n) \in D|H_0] = \alpha$, but there is one of these subsets, denoted with R, such that the power of the test associated with R is larger than any other subset D.

2. Example:
 Suppose $X \sim b(5, p)$. We want to test $H_0 : p = \frac{1}{2}$ against $H_a : p = \frac{3}{4}$ using one random value of X. We list all the probabilities of $b(5, \frac{1}{2})$ and $b(5, \frac{3}{4})$ in the next table:

| x | $P(X = x| p = \frac{1}{2})$ | $P(X = x| p = \frac{3}{4})$ |
|------|-----------------------------|-----------------------------|
| | 0 | $\frac{1}{32}$ |
| | 1 | $\frac{5}{32}$ |
| | 2 | $\frac{10}{32}$ |
| | 3 | $\frac{10}{32}$ |
| | 4 | $\frac{5}{32}$ |
| | 5 | $\frac{1}{32}$ |
| | $\frac{1}{1024}$ | $\frac{15}{1024}$ |
| | $\frac{10}{1024}$ | $\frac{90}{1024}$ |
| | $\frac{270}{1024}$ | $\frac{405}{1024}$ |
| | $\frac{243}{1024}$ | $\frac{243}{1024}$ |
Suppose we decided to use $\alpha = \frac{1}{32}$. We want to find the best critical region of size $\alpha = \frac{1}{32}$. We observe that $P(X = 0|p = \frac{1}{2}) = \frac{1}{32}$ and $P(X = 5|p = \frac{1}{2}) = \frac{1}{32}$. Therefore, there are two subsets $D_1(x = 0)$ and $D_2(x = 5)$, for which $P(X \in D_1|H_0) = \frac{1}{32}$ and $P(X \in D_2|H_0) = \frac{1}{32}$. One of these subsets will be our best critical region. Which one of these two subsets has the largest power? We compute: $P(X = 0|p = \frac{3}{4}) = \frac{1}{1024}$ and $P(X = 5|p = \frac{3}{4}) = \frac{243}{1024}$, therefore the best critical region of size $\alpha = \frac{1}{32}$ is $R = \{x = 5\}$.

We also observe that the best critical region of size $\alpha = \frac{1}{32}$ corresponds to the point in D for which $\frac{P(X = x|p = \frac{1}{2})}{P(X = x|p = \frac{3}{4})}$ is the minimum. We see this in the next table where we compute the ratios $\frac{P(X = x|p = \frac{1}{2})}{P(X = x|p = \frac{3}{4})}$.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x</td>
<td>p = \frac{1}{2})$</td>
<td>$\frac{1}{32}$</td>
<td>$\frac{5}{32}$</td>
<td>$\frac{10}{32}$</td>
<td>$\frac{10}{32}$</td>
<td>$\frac{5}{32}$</td>
</tr>
<tr>
<td>$P(X = x</td>
<td>p = \frac{3}{4})$</td>
<td>$\frac{1}{1024}$</td>
<td>$\frac{15}{1024}$</td>
<td>$\frac{90}{1024}$</td>
<td>$\frac{270}{1024}$</td>
<td>$\frac{405}{1024}$</td>
</tr>
<tr>
<td>$\frac{P(X = x</td>
<td>p = \frac{1}{2})}{P(X = x</td>
<td>p = \frac{3}{4})}$</td>
<td>32</td>
<td>$\frac{32}{3}$</td>
<td>$\frac{32}{9}$</td>
<td>$\frac{32}{27}$</td>
</tr>
</tbody>
</table>

Another example: Suppose $\alpha = \frac{6}{32}$. Find the best critical region of size $\alpha = \frac{6}{32}$.

3
3. Neyman-Pearson theorem:
Suppose X is a random variable and we need to decide whether the probability distribution is either $f_0(x)$ or $f_1(x)$. For example, we may want to test that $f_0(x)$ is $N(18, 1)$ against the alternative that $f_1(x)$ is $N(28, 1)$.

Let k be some positive number, and define the following two sets:

$$A = \left\{ x \mid \frac{f_0(x)}{f_1(x)} > k \right\}$$

and

$$R = \left\{ x \mid \frac{f_0(x)}{f_1(x)} < k \right\}$$

The Neyman-Pearson decision rule is the following:
If data x is in set A, then accept H_0.
If data x is in set R, then accept H_a.

Let α be the probability of Type I error based on A and R above.

Therefore for the Neyman-Pearson Lemma we have:

$$\alpha = \int_R f_0(x)dx \quad \text{and} \quad 1 - \alpha = \int_A f_0(x)dx,$$

and

$$\beta = \int_A f_1(x)dx$$

Suppose that there is a competitor test with acceptance region A^* and rejection region R^*, such that $\alpha^* \leq \alpha$.

Therefore for this competitor test we have:

$$\alpha^* = \int_{R^*} f_0(x)dx \quad \text{and} \quad 1 - \alpha^* = \int_{A^*} f_0(x)dx,$$

and

$$\beta^* = \int_{A^*} f_1(x)dx$$

The Neyman-Pearson Lemma claims that this test is the best, in the sense that any other competitor test with Type I error α^* such that $\alpha^* \leq \alpha$ will have higher probability of Type II error. Therefore, $\beta^* - \beta \geq 0$.

Proof:

This is the entire data space:
The value of X must fall here.

This is the data space partitioned by the Neyman-Pearson Lemma:

This is data set A.

This is data set R.

This is the data space partitioned by the competitor test:
This is set A^*.

This is set R^*.

This is the final picture showing the partitioned of the data space based on the two tests:

\[
\begin{array}{c|c}
A \cap A^* & A \cap R^* \\
\hline
R \cap A^* & R \cap R^* \\
\end{array}
\]

We need to calculate $\beta^* - \beta$:

\[
\beta^* - \beta = \int_{A^*} f_1(x) dx - \int_A f_1(x) dx \\
= \int_{(A^* \cap A) \cup (A^* \cap R)} f_1(x) dx - \int_{(A \cap A^*) \cup (A \cap R^*)} f_1(x) dx \\
= \int_{A^* \cap A} f_1(x) dx + \int_{A^* \cap R} f_1(x) dx - \left\{ \int_{A \cap A^*} f_1(x) dx + \int_{A \cap R^*} f_1(x) dx \right\} \\
= \int_{A^* \cap R} f_1(x) dx - \int_{A \cap R^*} f_1(x) dx.
\]
For the first integral \(\int_{A^* \cap R} f_1(x) \, dx \), it should be true that \(\frac{f_0(x)}{f_1(x)} < k \) because it is done over the subset \(R \). Therefore the integral will be smaller if we replace \(f_1(x) \) with \(\frac{f_0(x)}{k} \) since \(f_1(x) > \frac{f_0(x)}{k} \).

For the second integral \(\int_{A \cap R^*} f_1(x) \, dx \), it should be true that \(\frac{f_0(x)}{f_1(x)} > k \) because it is done over the subset \(A \). Therefore the integral will be larger if we replace \(f_1(x) \) with \(\frac{f_0(x)}{k} \) since \(f_1(x) < \frac{f_0(x)}{k} \).

These two changes above will give us:

\[
\beta^* - \beta \geq \int_{A^* \cap R} \frac{1}{k} f_0(x) \, dx - \int_{A \cap R^*} \frac{1}{k} f_0(x) \, dx
\]

\[
= \frac{1}{k} \int_{A^* \cap R} f_0(x) \, dx - \frac{1}{k} \int_{A \cap R^*} f_0(x) \, dx.
\]

Now, add an subtract \(\frac{1}{k} \int_{A \cap A^*} f_0(x) \, dx \) to get:

\[
\beta^* - \beta \geq \frac{1}{k} \int_{A^* \cap R} f_0(x) \, dx + \frac{1}{k} \int_{A \cap A^*} f_0(x) \, dx
\]

\[- \frac{1}{k} \int_{A \cap R^*} f_0(x) \, dx - \frac{1}{k} \int_{A \cap A^*} f_0(x) \, dx.
\]

Because, \(A^* = (A^* \cap A) \cup (A^* \cap R) \) and \(A = (A \cap A^*) \cup (A \cap R^*) \) we finally get:

\[
\beta^* - \beta \geq \frac{1}{k} \int_{A^*} f_0(x) \, dx - \frac{1}{k} \int_{A} f_0(x) \, dx
\]

\[
\geq \frac{1}{k}(1 - \alpha^*) - \frac{1}{k}(1 - \alpha)
\]

\[
\geq \frac{1}{k}(\alpha - \alpha^*) \geq 0.
\]

Therefore, the competitor test with equal or better Type I error probability must have larger Type II error probability.

4. Neyman-Pearson theorem. Summary and examples:

Suppose we wish to test the simple hypothesis

\(H_0 : \theta = \theta_0 \)

against the alternative simple hypothesis

\(H_a : \theta = \theta_a \).

As always, a sample of \(X_1, X_2, \ldots, X_n \) is selected from a probability distribution with unknown parameter \(\theta \). Let \(L(\theta_0) \) denote the likelihood function when \(\theta = \theta_0 \) and \(L(\theta_a) \) denote the likelihood function when \(\theta = \theta_a \). Then for a given significance level \(\alpha \), the test that maximizes the power has a rejection region determined by \(\frac{L(\theta_0)}{L(\theta_a)} < k \), where \(k \) is some constant. This test will be the most powerful test for testing \(H_0 \) against \(H_a \).
The previous result applies to simple hypotheses. Usually one of the two hypotheses is composite. For example: $H_0: \theta = \theta_0$
against the alternative composite hypothesis
$H_a: \theta > \theta_0$.
We say that a test that is most powerful for every simple alternative in H_a is uniformly most powerful.

Example 1:
Let X be a single observation from the probability density function $f(x) = \theta x^{\theta-1}, 0 < x < 1$. Find the most powerful test using significance level $\alpha = 0.05$ for testing
$H_0: \theta = 1$
$H_a: \theta = 2$.

Example 2:
Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma)$, with known σ^2. Find the uniformly most powerful test using significance level α for testing
$H_0: \mu = \mu_0$
$H_a: \mu > \mu_0$.

Example 3:
Let \(X \sim exp \left(\frac{1}{\lambda} \right) \). Therefore, \(f(x) = \frac{1}{\lambda} e^{-\frac{1}{\lambda} x}, \lambda > 0, x > 0 \). Let \(X_1, X_2, \ldots, X_n \) be a random sample from this distribution.

a. Show that the best critical region for testing
\[
H_0 : \lambda = 3 \\
H_a : \lambda = 5
\]
is based on \(\sum_{i=1}^{n} x_i \).

b. If \(n = 12 \) and using \(\frac{2}{3} \sum_{i=1}^{n} x_i \sim \chi^2_{24} \) find the best critical region when the significance level \(\alpha = 0.05 \).
Example 4:
Suppose X has the possible values 0,1,2,3,4. Suppose that the null hypothesis says that X is uniform on these integers, while the alternative hypothesis says that $X \sim b(4, \frac{1}{2})$. Let’s see what happens if we let k of the Neyman-Pearson lemma be equal to 0.6. The following table will be help us find the best critical region when $k = 0.6$ and the power of the test.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x</td>
<td>H_0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(X = x</td>
<td>H_a)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{P(X=x</td>
<td>H_0)}{P(X=x</td>
<td>H_a)}$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>