Hypothesis testing

- A hypothesis test is a claim about a parameter of a population.

- Given the data we want to make a decision about which of two hypothesis is true (or not true).

- The two hypotheses are called the “null” and “alternative” hypotheses (denoted with H_0 and H_a respectively).

- The test has the following formulation:

 $H_0 : \theta \in \Theta_0$

 $H_a : \theta \in \Theta'$, where Θ' is the complement of Θ_0.

- Examples:

 1. Consider the simple regression model: $y_i = \beta_0 + \beta x_i + \epsilon_i$. We wish to test
 $H_0 : \beta_1 = 0$ (the null hypothesis states that there is no association between the response y and the predictor x).
 $H_a : \beta_1 \neq 0$ (the alternative hypothesis states that there is a linear association between y and x).

 2. Consider an experiment in which a patient is given a treatment (some drug) and we want to test if there is a difference between before and after administrating the drug. We wish to test
 $H_0 : \mu_d = 0$ (the null hypothesis states that there is no difference).
 $H_a : \mu_d \neq 0$ (the alternative hypothesis states that there is a difference).

 3. Consider an experiment where the goal is to see if on average there is a difference in the production of corn using different fertilizers. We wish to test
 $H_0 : \mu_1 = \mu_2 = \ldots = \mu_k$ (the null hypothesis states that the production is the same under the different fertilizers (treatments)).
 $H_a : \text{At least two means are not equal}$ (the alternative hypothesis states that there are differences).

 4. Test for the proportion of defective items at a certain production line:
 $H_0 : p = p_0$
 $H_A : p > p_0$.

• We need to find and evaluate hypothesis tests.

• Find a procedure that will tell us for which sample values \(H_0 \) is accepted (and therefore for which sample values \(H_0 \) is rejected). These are called the acceptance region (accepts \(H_0 \)) and the rejection region (rejects \(H_0 \)).

• Usually the procedure of rejecting (or accepting) involves the so called test statistic \(T(X) \) which a function of the data \(X = (X_1, \ldots, X_n)' \).

• Type I and Type II error

<table>
<thead>
<tr>
<th>ACTUAL SITUATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_0) IS TRUE</td>
</tr>
<tr>
<td>-------------------</td>
</tr>
<tr>
<td>DO NOT REJECT (H_0)</td>
</tr>
<tr>
<td>REJECT (H_0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(1 - \alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1 - \beta) (Power)</td>
<td></td>
</tr>
</tbody>
</table>

• Testing a simple hypothesis, i.e. \(H_0 : \theta = \theta' \) against \(H_a : \theta = \theta'' \).

1. Best critical region of size \(\alpha \).
 Definition: Let \(R \) denote a subset of the sample space. Then \(R \) is called “best critical region” of size \(\alpha \) for testing the simple hypothesis \(H_0 : \theta = \theta' \) against \(H_a : \theta = \theta'' \) if for every subset \(D \) of the sample space for which \(P[(X_1, \ldots, X_n) \in D|H_0] = \alpha \) it is true that
 a. \(P[(X_1, \ldots, X_n) \in R|H_0] = \alpha \).
 b. \(P[(X_1, \ldots, X_n) \in R|H_a] \geq P[(X_1, \ldots, X_n) \in D|H_a] \).
 Explanation:
 In general, there are many subsets \(D \) for which \(P[(X_1, \ldots, X_n) \in D|H_0] = \alpha \), but there is one of these subsets, denoted with \(R \), such that the power of the test associated with \(R \) is larger than any other subset \(D \).

2. Example:
 Suppose \(X \sim b(5, p) \). We want to test \(H_0 : p = \frac{1}{2} \) against \(H_a : p = \frac{3}{4} \) using one random value of \(X \). We list all the probabilities of \(b(5, \frac{1}{2}) \) and \(b(5, \frac{3}{4}) \) in the next table:

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x & 0 & 1 & 2 & 3 & 4 & 5 \\
\hline
P(X = x|p = \frac{1}{2}) & \frac{1}{32} & \frac{5}{32} & \frac{10}{32} & \frac{10}{32} & \frac{5}{32} & \frac{1}{32} \\
\hline
P(X = x|p = \frac{3}{4}) & \frac{1}{1024} & \frac{15}{1024} & \frac{90}{1024} & \frac{270}{1024} & \frac{405}{1024} & \frac{243}{1024} \\
\hline
\end{array}
\]
Suppose we decided to use $\alpha = \frac{1}{32}$. We want to find the best critical region of size $\alpha = \frac{1}{32}$. We observe that $P(X = 0| p = \frac{1}{2}) = \frac{1}{32}$ and $P(X = 5| p = \frac{1}{2}) = \frac{1}{32}$. Therefore, there are two subsets $D_1(x = 0)$ and $D_2(x = 5)$, for which $P(X \in D_1|H_0) = \frac{1}{32}$ and $P(X \in D_2|H_0) = \frac{1}{32}$. One of these subsets will be our best critical region. Which one of these two subsets has the largest power? We compute: $P(X = 0| p = \frac{3}{4}) = \frac{1}{1024}$ and $P(X = 5| p = \frac{3}{4}) = \frac{243}{1024}$, therefore the best critical region of size $\alpha = \frac{1}{32}$ is $R = \{x = 5\}$.

We also observe that the best critical region of size $\alpha = \frac{1}{32}$ corresponds to the point in D for which $\frac{P(X=x|p=\frac{1}{2})}{P(X=x|p=\frac{3}{4})}$ is the minimum. We see this in the next table where we compute the ratios $\frac{P(X=x|p=\frac{1}{2})}{P(X=x|p=\frac{3}{4})}$.

\begin{align*}
\begin{array}{c|cccccc}
 x & 0 & 1 & 2 & 3 & 4 & 5 \\
 P(X = x| p = \frac{1}{2}) & \frac{1}{32} & \frac{3}{32} & \frac{10}{32} & \frac{10}{32} & \frac{5}{32} & \frac{1}{32} \\
 P(X = x| p = \frac{3}{4}) & \frac{1}{1024} & \frac{15}{1024} & \frac{90}{1024} & \frac{270}{1024} & \frac{405}{1024} & \frac{243}{1024} \\
 \frac{P(X=x|p=\frac{1}{2})}{P(X=x|p=\frac{3}{4})} & 32 & \frac{32}{3} & \frac{32}{9} & \frac{32}{27} & \frac{32}{81} & \frac{32}{243}
\end{array}
\end{align*}

Another example: Suppose $\alpha = \frac{6}{32}$. Find the best critical region of size $\alpha = \frac{6}{32}$.
3. Neyman-Pearson theorem:
Suppose \(X \) is a random variable and we need to decide whether the probability distribution is either \(f_0(x) \) or \(f_1(x) \). For example, we may want to test that \(f_0(x) \) is \(N(18, 1) \) against the alternative that \(f_1(x) \) is \(N(28, 1) \).

Let \(k \) be some positive number, and define the following two sets:

\[
A = \left\{ x \left| \frac{f_0(x)}{f_1(x)} > k \right. \right\}
\]

and

\[
R = \left\{ x \left| \frac{f_0(x)}{f_1(x)} < k \right. \right\}
\]

The Neyman-Pearson decision rule is the following:
If data \(x \) is in set \(A \), then accept \(H_0 \).
If data \(x \) is in set \(R \), then accept \(H_a \).

Let \(\alpha \) be the probability of Type I error based on \(A \) and \(R \) above.

Therefore for the Neyman-Pearson Lemma we have:

\[
\alpha = \int_R f_0(x)dx \quad \text{and} \quad 1 - \alpha = \int_A f_0(x)dx,
\]

and

\[
\beta = \int_A f_1(x)dx
\]

Suppose that there is a competitor test with acceptance region \(A^* \) and rejection region \(R^* \), such that \(\alpha^* \leq \alpha \).

Therefore for this competitor test we have:

\[
\alpha^* = \int_{R^*} f_0(x)dx \quad \text{and} \quad 1 - \alpha^* = \int_{A^*} f_0(x)dx,
\]

and

\[
\beta^* = \int_{A^*} f_1(x)dx
\]

The Neyman-Pearson Lemma claims that this test is the best, in the sense that any other competitor test with Type I error \(\alpha^* \) such that \(\alpha^* \leq \alpha \) will have higher probability of Type II error. Therefore, \(\beta^* - \beta \geq 0 \).
Proof:

This is the entire data space:

\[
\begin{array}{c}
\text{The value of } X \text{ must fall here.}
\end{array}
\]

This is the data space partitioned by the Neyman-Pearson Lemma:

\[
\begin{array}{c}
\text{This is data set } A.
\end{array}
\]

\[
\begin{array}{c}
\text{This is data set } R.
\end{array}
\]
This is the data space partitioned by the competitor test:

This is set A^\ast.

This is set R^\ast.

This is the final picture showing the partitioned of the data space based on the two tests:

<table>
<thead>
<tr>
<th>$A \cap A^\ast$</th>
<th>$A \cap R^\ast$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$R \cap A^\ast$</td>
<td>$R \cap R^\ast$</td>
</tr>
</tbody>
</table>

We need to calculate $\beta^\ast - \beta$:

$$\beta^\ast - \beta = \int_{A^\ast} f_1(x)dx - \int_A f_1(x)dx$$

$$= \int_{(A^\ast \cap A) \cup (A^\ast \cap R)} f_1(x)dx - \int_{(A \cap A^\ast) \cup (A \cap R^\ast)} f_1(x)dx$$

$$= \int_{A^\ast \cap A} f_1(x)dx + \int_{A^\ast \cap R} f_1(x)dx - \left\{ \int_{A \cap A^\ast} f_1(x)dx + \int_{A \cap R^\ast} f_1(x)dx \right\}$$

$$= \int_{A^\ast \cap R} f_1(x)dx - \int_{A \cap R^\ast} f_1(x)dx.$$
For the first integral $\int_{A^* \cap R} f_1(x) \, dx$, it should be true that $\frac{f_0(x)}{f_1(x)} < k$ because it is done over the subset R. Therefore the integral will be smaller if we replace $f_1(x)$ with $\frac{f_0(x)}{k}$ since $f_1(x) > \frac{f_0(x)}{k}$.

For the second integral $\int_{A \cap R^*} f_1(x) \, dx$, it should be true that $\frac{f_0(x)}{f_1(x)} > k$ because it is done over the subset A. Therefore the integral will be larger if we replace $f_1(x)$ with $\frac{f_0(x)}{k}$ since $f_1(x) < \frac{f_0(x)}{k}$.

These two changes above will give us:

$$\beta^* - \beta \geq \int_{A^* \cap R} \frac{1}{k} f_0(x) \, dx - \int_{A^* \cap R^*} \frac{1}{k} f_0(x) \, dx$$

$$= \frac{1}{k} \int_{A^* \cap R} f_0(x) \, dx - \frac{1}{k} \int_{A^* \cap R^*} f_0(x) \, dx.$$

Now, add an subtract $\frac{1}{k} \int_{A^* \cap A} f_0(x) \, dx$ to get:

$$\beta^* - \beta \geq \frac{1}{k} \int_{A^* \cap R} f_0(x) \, dx + \frac{1}{k} \int_{A^* \cap A} f_0(x) \, dx$$

$$- \frac{1}{k} \int_{A \cap R^*} f_0(x) \, dx - \frac{1}{k} \int_{A \cap A^*} f_0(x) \, dx.$$

Because, $A^* = (A^* \cap A) \cup (A^* \cap R)$ and $A = (A \cap A^*) \cup (A \cap R^*)$ we finally get:

$$\beta^* - \beta \geq \frac{1}{k} \int_{A^*} f_0(x) \, dx - \frac{1}{k} \int_{A} f_0(x) \, dx$$

$$\geq \frac{1}{k}(1 - \alpha^*) - \frac{1}{k}(1 - \alpha)$$

$$\geq \frac{1}{k}(\alpha - \alpha^*) \geq 0.$$

Therefore, the competitor test with equal or better Type I error probability must have larger Type II error probability.

4. Neyman-Pearson theorem. Summary and examples:
Suppose we wish to test the simple hypothesis $H_0 : \theta = \theta_0$ against the alternative simple hypothesis $H_a : \theta = \theta_a$.

As always, a sample of X_1, X_2, \ldots, X_n is selected from a probability distribution with unknown parameter θ. Let $L(\theta_0)$ denote the likelihood function when $\theta = \theta_0$ and $L(\theta_a)$ denote the likelihood function when $\theta = \theta_a$. Then for a given significance level α, the test that maximizes the power has a rejection region determined by $\frac{L(\theta_0)}{L(\theta_a)} < k$, where k is some constant. This test will be the most powerful test for testing H_0 against H_a.

7
The previous result applies to simple hypotheses. Usually one of the two hypotheses is composite. For example: $H_0 : \theta = \theta_0$
against the alternative composite hypothesis
$H_a : \theta > \theta_0$.
We say that a test that is most powerful for every simple alternative in H_a is uniformly most powerful.

Example 1:
Let X be a single observation from the probability density function $f(x) = \theta x^{\theta - 1}, 0 < x < 1$. Find the most powerful test using significance level $\alpha = 0.05$ for testing
$H_0 : \theta = 1$
$H_a : \theta = 2$.

Example 2:
Let X_1, X_2, \ldots, X_n be a random sample from $N(\mu, \sigma)$, with known σ^2. Find the uniformly most powerful test using significance level α for testing
$H_0 : \mu = \mu_0$
$H_a : \mu > \mu_0$.
Example 3:
Let $X \sim exp\left(\frac{1}{\lambda}\right)$. Therefore, $f(x) = \frac{1}{\lambda} e^{-\frac{1}{\lambda} x}, \lambda > 0, x > 0$. Let X_1, X_2, \ldots, X_n be a random sample from this distribution.

a. Show that the best critical region for testing
 $H_0 : \lambda = 3$
 $H_a : \lambda = 5$
 is based on $\sum_{i=1}^{n} x_i$.

b. If $n = 12$ and using $\frac{2}{\lambda} \sum_{i=1}^{n} x_i \sim \chi^2_{24}$ find the best critical region when the significance level $\alpha = 0.05$.
Example 4:
Suppose X has the possible values 0,1,2,3,4. Suppose that the null hypothesis says that X is uniform on these integers, while the alternative hypothesis says that $X \sim b(4, \frac{1}{2})$. Let’s see what happens if we let k of the Neyman-Pearson lemma be equal to 0.6. The following table will be help us find the best critical region when $k = 0.6$ and the power of the test.

<table>
<thead>
<tr>
<th>x</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P(X = x</td>
<td>H_0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(X = x</td>
<td>H_a)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(X = x</td>
<td>H_0)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$P(X = x</td>
<td>H_a)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>