

University of California, Los Angeles
Department of Statistics

Statistics 100B

Instructor: Nicolas Christou

Moment generating functions

Definition:

$$M_X(t) = Ee^{tX}$$

Therefore,

If X is discrete

$$M_X(t) = \sum_x e^{tX} p(x)$$

If X is continuous

$$M_X(t) = \int_x e^{tX} f(x) dx$$

Aside:

$$e^x = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$$

Similarly,

$$e^{tx} = 1 + \frac{tx}{1!} + \frac{(tx)^2}{2!} + \frac{(tx)^3}{3!} + \dots$$

Let X be a discrete random variable.

$$M_X(t) = \sum_x e^{tX} p(x) = \sum_x \left[1 + \frac{tx}{1!} + \frac{(tx)^2}{2!} + \frac{(tx)^3}{3!} + \dots \right] p(x)$$

or

$$M_X(t) = \sum_x p(x) + \frac{t}{1!} \sum_x x p(x) + \frac{t^2}{2!} \sum_x x^2 p(x) + \frac{t^3}{3!} \sum_x x^3 p(x) + \dots$$

To find the k_{th} moment simply evaluate the k_{th} derivative of the $M_X(t)$ at $t = 0$.

$$EX^k = [M_X(t)]_{t=0}^{k_{th} \text{ derivative}}$$

For example:

First moment:

$$M_X(t)' = \sum_x x p(x) + \frac{2t}{2!} \sum_x x^2 p(x) + \dots$$

We see that $M_X(0)' = \sum_x x p(x) = E(X)$.

Similarly,
Second moment

$$M_X(t)'' = \sum_x x^2 p(x) + \frac{6t}{3!} \sum_x x^3 p(x) + \dots$$

We see that $M_X(0)'' = \sum_x x^2 p(x) = E(X^2)$.

Or from direct differentiation of the moment generating function from the definition and evaluate the derivatives at $t = 0$. Also, note that $M_X(0) = 1$

$$\begin{aligned} M_X(t) &= Ee^{tX} \\ M'_X(t) &= \frac{\partial M_X(t)}{\partial t} = \\ M''_X(t) &= \frac{\partial^2 M_X(t)}{\partial t^2} = \end{aligned}$$

Corollary:

Instead of differentiating $M_X(t)$ we can differentiate $\ln[M_X(t)]$ and evaluate the first and second derivatives at $t = 0$. This will give $E[X]$ and $\text{var}[X]$.

$$\Psi(t) = \ln[M_X(t)]$$

$$\Psi'(t) =$$

$$\Psi''(t) =$$

Examples:

1. Find the moment generating function of $X \sim b(n, p)$.

$$\begin{aligned} M_X(t) &= Ee^{tx} \\ M_X(t) &= \sum_x e^{tx} p(x) \\ M_X(t) &= \sum_{x=0}^n e^{tx} \binom{n}{x} p^x (1-p)^{n-x} \\ M_X(t) &= \sum_{x=0}^n \binom{n}{x} (pe^t)^x (1-p)^{n-x} \end{aligned}$$

Using the binomial theorem $(a + b)^n = \sum_{x=0}^n \binom{n}{x} a^x b^{n-x}$ we get

$$M_X(t) = (pe^t + 1 - p)^n$$

2. Find the moment generating function of $X \sim Poisson(\lambda)$.

$$\begin{aligned}
M_X(t) &= Ee^{tx} \\
M_X(t) &= \sum_x e^{tx} p(x) \\
M_X(t) &= \sum_{x=0}^{\infty} e^{tx} \frac{\lambda^x e^{-\lambda}}{x!} \\
M_X(t) &= e^{-\lambda} \sum_{x=0}^{\infty} \frac{(\lambda e^t)^x}{x!} \\
M_X(t) &= e^{-\lambda} e^{\lambda e^t} \\
M_X(t) &= e^{\lambda(e^t - 1)}
\end{aligned}$$

3. Find the moment generating function of $X \sim \Gamma(\alpha, \beta)$. We say that X follows a gamma distribution with parameters α, β if its pdf is given by $f(x) = \frac{x^{\alpha-1} e^{-\frac{x}{\beta}}}{\Gamma(\alpha) \beta^\alpha}$, $x > 0, \alpha > 0, \beta > 0$, where $\Gamma(\alpha)$ is the gamma function defined as $\Gamma(\alpha) = \int_0^\infty x^{\alpha-1} e^{-x} dx$.

$$\begin{aligned}
M_X(t) &= Ee^{tx} \\
M_X(t) &= \int_x e^{tx} f(x) dx \\
M_X(t) &= \int_{x=0}^{\infty} e^{tx} \frac{x^{\alpha-1} e^{-\frac{x}{\beta}}}{\Gamma(\alpha) \beta^\alpha} dx \\
M_X(t) &= \int_{x=0}^{\infty} \frac{x^{\alpha-1} e^{-x(\frac{1}{\beta} - t)}}{\Gamma(\alpha) \beta^\alpha} dx \quad \text{Use the transformation } y = x(\frac{1}{\beta} - t) \text{ to get} \\
&\vdots \\
M_X(t) &= (1 - \beta t)^{-\alpha}
\end{aligned}$$

Another method:

Use the kernel function of the gamma distribution. How?

4. Find the moment generating function of $X \sim exp(\lambda)$. The exponential distribution is a special case of $\Gamma(\alpha, \beta)$ with $\alpha = 1$ and $\beta = \frac{1}{\lambda}$ (why?), therefore, $M_X(t) = (1 - \frac{t}{\lambda})^{-1}$.

5. Find the moment generating function of $Z \sim N(0, 1)$. Aside note: The normal distribution $X \sim N(\mu, \sigma)$ has pdf

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{1}{2\sigma^2}(x-\mu)^2},$$

and the standard normal $Z \sim N(0, 1)$ has pdf

$$f(z) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2}$$

Therefore,

$$\begin{aligned} M_Z(t) &= Ee^{tz} \\ M_Z(t) &= \int_z e^{tz} f(z) dz \\ M_Z(t) &= \int_{-\infty}^{+\infty} e^{tz} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}z^2} dz \end{aligned}$$

Add/subtract to the exponent $\frac{1}{2}t^2$

$$M_Z(t) = e^{\frac{1}{2}t^2} \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z-t)^2} dz$$

Explain why $\int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(z-t)^2} dz = 1$

Therefore,

$$M_Z(t) = e^{\frac{1}{2}t^2}$$

Theorem:

Let X, Y be independent random variables with moment generating functions $M_X(t), M_Y(t)$ respectively. Then, the moment generating function of the sum of these two random variables is equal to the product of the individual moment generating functions:

$$M_{X+Y}(t) = M_X(t)M_Y(t)$$

Proof:

Examples: Let X, Y independent random variables. Use this theorem to find the distribution of $X + Y$:

a. $X \sim b(n_1, p), Y \sim b(n_2, p)$.

b. $X \sim \text{Poisson}(\lambda_1), Y \sim \text{Poisson}(\lambda_2)$.

Properties of moment generating functions:

Let X be a random variable with moment generating function $M_X(t) = Ee^{tX}$, and a, b are constants

$$1. M_{X+a}(t) = e^{at}M_X(t)$$

$$2. M_{bX}(t) = M_X(bt)$$

$$3. M_{\frac{X+a}{b}} = e^{\frac{a}{b}t}M_X\left(\frac{t}{b}\right)$$

Use these properties and the moment generating function of $Z \sim N(0, 1)$ to find the moment generating function of $X \sim N(\mu, \sigma)$

Suppose X, Y are independent random variables. Find the distribution of $X + Y$, where $X \sim N(\mu_1, \sigma_1)$, $Y \sim N(\mu_2, \sigma_2)$.

Let X_1, X_2, \dots, X_n be i.i.d. random variables from $N(\mu, \sigma)$. Use moment generating functions to find the distribution of

a. $T = X_1 + X_2 + \dots + X_n$.

b. $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$.

Distribution of the sample mean - Sampling from normal distribution

If we sample from normal distribution $N(\mu, \sigma)$ then \bar{X} follows exactly the normal distribution with mean μ and standard deviation $\frac{\sigma}{\sqrt{n}}$ regardless of the sample size n . In the next figure we see the effect of the sample size on the shape of the distribution of \bar{X} . The first figure is the $N(5, 2)$ distribution. The second figure represents the distribution of \bar{X} when $n = 4$. The third figure represents the distribution of \bar{X} when $n = 16$.

