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Multivariate normal distribution

One of the most important distributions in statistical inference is the multivariate normal
distribution. The probability density function of the multivariate normal distribution, its
moment generating function, and its properties are discussed here.

Probability density function
We say that a random vector Y = (Y1, Y2, . . . , Yn)′ with mean vector µ and variance covari-
ance matrix Σ follows the multivariate normal distribution if its probability density function
is given by

f(Y) =
1

(2π)
n
2
|Σ|−

1
2 e−

1
2
(Y−µ)′Σ−1

(Y−µ), (1)

and we write, Y ∼ Nn(µ,Σ). If Y = (Y1, Y2) then we have a bivariate normal distribution
and its probability density function can be expressed as

f(y1, y2) =
1

2πσ1σ2
√

1− ρ2

× exp

[
− 1

2(1− ρ2)

[(
y1 − µ1

σ1

)2

+
(
y2 − µ2

σ2

)2

− 2ρ
(
y1 − µ1

σ1

)(
y2 − µ2

σ2

)]]

Here, we have Σ =

(
σ2
1 σ12

σ21 σ2
2

)
. The previous expression can be obtained by finding the

inverse of Σ and substituting it into (1). Here is the bivariate normal pdf.
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Moment generating function
A useful tool in statistical theory is the moment generating function. The joint moment
generating function is defined as

MY(t) = Eet
′Y = Ee

∑n

i=1
yiti ,

where Y = (Y1, Y2, . . . , Yn)′ and t = (t1, t2, . . . , tn)′. Suppose Z ∼ Nn(0, I). Since Z1, Z2, . . . , Zn
are independent the joint moment generating function of Z is MZ(t) = e

1
2
t′t. Why? To

find the joint moment generating function of Y ∼ Nn(µ,Σ) we use the transformation

Y = Σ
1
2 Z + µ to get MY(t) = et

′µ+ 1
2
t′Σt.

Theorem 1
Let Y ∼ Nn(µ,Σ), and let A be an m × n matrix of rank m and c be an m × 1 vector.
Then AY + c ∼ Nm(Aµ + c,AΣA′).
Proof

Theorem 2
Let Y ∼ Nn(µ,Σ). Sub-vectors of Y follow the multivariate normal distribution and linear
combinations of Y1, Y2, . . . , Yn follow the univariate normal distribution.

Proof

Suppose Y, µ, and Σ are partitioned as follows Y =

(
Q1

Q2

)
,µ =

(
µ1

µ2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Y1 is p×1. We will show that Q1 ∼ Np(µ1,Σ11) and Q2 ∼ Nn−p(µ2,Σ22). The result
follows directly by using the previous theorem with A = (Ip,0). For a linear combination
of Y1, Y2, . . . , Yn, i.e. a1Y1 + a2Y2 + . . .+ anYn = a′Y, the matrix A of theorem 1 is a vector
and therefore, a′Y ∼ N(a′µ, a′Σa).

Example

Let Y =


Y1
Y2
Y3
Y4
Y5

 ,µ =


µ1

µ2

µ3

µ4

µ5

 ,Σ =


σ2
1 σ12 σ13 σ14 σ15

σ21 σ2
2 σ23 σ24 σ25

σ31 σ32 σ2
3 σ34 σ35

σ41 σ42 σ43 σ2
4 σ45

σ51 σ52 σ53 σ54 σ2
5

, then if Q1 =

(
Y1
Y2

)
,

it follows that Q1 ∼ N

[(
µ1

µ2

)
,

(
σ2
1 σ12

σ21 σ2
2

)]
.
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Statistical independence
Suppose Y,µ,Σ are partitioned as in theorem 2. We say that Q1,Q2 are statistically inde-
pendent if and only if Σ12 = 0. This can easily be shown using the joint moment generating
function of Y. Recall that the exponent of the joint moment generating function of the
multivariate normal distribution is t′µ + 1

2
t′Σt which after partitioning t conformably (ac-

cording to the partitioning of Y,µ,Σ) can be expressed as t1
′µ1 + t2

′µ2 + 1
2
t1
′Σ11t1 +

1
2
t2
′Σ22t2 + t1

′Σ12t2. When Σ12 = 0, the joint moment generating function can be ex-
pressed as the product of the two marginal moment generating functions of Q1 and Q2, i.e.
MY(t) = MQ1(t1)MQ2(t2), therefore, Q1 and Q2 are independent.

Theorem 3
Using theorem 1 and the statement about statistical independence above, we prove the fol-
lowing theorem. Suppose Y ∼ Nn(µ,Σ) and define the following two vectors Q1 = AY and
Q2 = BY. Then, Q1 and Q2 are independent if cov(Q1,Q2) = AΣB′ = 0.

Proof

We stack the two vectors as follows: Q =

(
Q1

Q2

)
=

(
A
B

)
Y = LY. Therefore using

theorem 1 we find that Q ∼ N(Lµ,LΣL′) or

Q ∼ N

[(
A
B

)
µ,

(
AΣA′ AΣB′

BΣA′ BΣB′

)]
, and we conclude that Q1 and Q2 are independent

if and only if AΣB′ = 0.

Example
Consider the bivariate normal distribution (see page 1). From theorem 1 it follows that
Y1 ∼ N(µ1, σ1). This is also called the marginal probability distribution of Y1. We want to
find the conditional distribution of Y2 given Y1.

From the conditional probability law, fY2|Y1(y2|y1) =
fY1Y2 (y1,y2)

fY1 (y1)
, and after substituting the

bivariate density and the marginal density it can be shown that the conditional probability
density function of Y2 given Y1 is given by

fY2|Y1(y2|y1) =
1√

σ2
2(1− ρ)2

√
2π
exp

[
−1

2

(
Y2 − µ2 − ρσ2σ1 (Y1 − µ1)

σ2
2(1− ρ2)

)]
.

We recognize that this is a normal probability density function with mean
µY2|Y1 = µ2 + ρσ2

σ1
(Y1 − µ1) and variance σ2

Y2|Y1 = σ2
2(1− ρ2).
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Example 1
Suppose the prices (in $), Y1, Y2, Y3, Y4 of objects A, B, C, and D are jointly normally distributed as

Y ∼ N4(µ,Σ), where, Y =


Y1
Y2
Y3
Y4

, µ =


1
3
6
4

, and Σ =


3 2 3 3
2 5 5 4
3 5 9 5
3 4 5 6

.

Answer the following questions:

a. Suppose a person wants to buy three of product A, four of product B, and one of product C.
Find the probability that the person will spend more than $30.

b. Find the moment generating function of Y1.

c. Find the joint moment generating function of (Y1, Y3).

d. Find the correlation coefficient between Y3 and Y4.

Example 2

Suppose Y ∼ N3(µ,Σ), where Y =

 Y1
Y2
Y3

, µ =

 2
1
2

, and Σ =

 2 1 1
1 3 0
1 0 1

. Find the joint

distribution of Q1 = Y1 + Y2 + Y3 and Q2 = Y1 − Y2.

Example 3
Answer the following questions:

a. Let X ∼ Nn(µ1,Σ), where 1 =


1
1
...
1

, and Σ is the variance covariance matrix of X. Let

Σ = (1 − ρ)I + ρJ, with ρ > − 1
n−1 , I =


1 0 0 0
0 1 0 0
...

...
. . .

...
0 0 0 1

 and J =


1 1 1 1
1 1 1 1
...

...
. . .

...
1 1 1 1

.

Therefore, when ρ = 0 we have X ∼ Nn(µ1, I), and in this case we showed in class that X̄
and

∑n
i=1(Xi − X̄)2 are independent. Are they independent when ρ 6= 0?

b. Suppose ε ∼ N3(0, σ
2I3) and that Y0 ∼ N(0, σ2), independently of the εi’s. Therefore

the vector


Y0
ε1
ε2
ε3

, is multivariate normal. Define Yi = ρYi−1 + εi for i = 1, 2, 3. Express

Y1, Y2, Y3 in terms of ρ, Y0, and the εi’s.

c. Refer to part (b). Find the covariance matrix of Y =

 Y1
Y2
Y3

,

d. What is the distribution of Y?
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