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A note on expectation and independence and exponential families

In this note we will discuss results on expectation of functions of random variables for one and
two random variables and how independence is established between two random variables.
Finally we will discuss exponential families and how to identify an exponential family and
how they are used to find the mean and variance of a random random variable.

1. Let X be a continuous random variable. Then E[X] =
∫
x xf(x)dx.

2. Suppose we want to find the expectation of a function of X. Let Y = g(X). Show
that E[g(X)] =

∫
x g(x)f(x)dx.

One way to compute E[Y ] is to find the pdf of Y and then
E[Y ] = .

So let’s find f(y). Use the method of cdf. Begin with the cdf of Y .

FY (y) = P [Y ≤ y] = P [g(X) ≤ y] = P [X ≤ w(y)]

FY (y) = FX [w(y)]

Take derivative on both sides w.r.t. y to get
fY (y) = .

Back to the proof:
Let I =

∫
x g(x)f(x)dx. We will show that this is equal to E[g(X)].

Let y = g(x) and solve for x. We get x = w(y). Complete the following:
dx
dy

=

Transform the integral I in terms of y: I =
∫
y

What do you observe?

Example:
Let X ∼ exp(1), then f(x) = . Find E[X3].
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Answer:
E[X3] =

∫∞
0 dx.

To evaluate this integral we can use the kernel function of the gamma distribution.

Let X ∼ Γ(α, β), α > 0.β > 0, x > 0. Then f(x) = xα−1e
− x
β

Γ(α)βα
. The part of the pdf

xα−1e−
x
β it is called the kernel function.

We also need a note on the gamma function:
Definition:
Γ(α) =

∫∞
0 xα−1e−xdx.

Properties:

Γ(α) = (α− 1)Γ(α− 1)

Γ(α + 1) = αΓ(α)

Γ(α + 2) = α(α + 1)Γ(α)

Γ(α) = (α− 1)! (if α is an integer)

Use the notes above to evaluate E[X3] =
∫∞

0 x3e−xdx.
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A note on independence.
Let X, Y be random variables with joint pdf f(x, y). Then X, Y are independent if

f(x, y) = f(x)f(y)

(joint pdf) = (marginal pdf of x)(marginal pdf of y)

Note: To find the marginal pdf use
f(x) =

∫
y f(x, y)dy

f(y) =
∫
x f(x, y)dx

Theorem:
Let X, Y be independent random variables. Then E[XY ] = [EX][EY ].
Proof: XY is a function of X and Y . Therefore, using the expectation of a function of x
and y
E[g(x, y)] =

∫
x

∫
y g(x, y)f(x, y)dxdy we get:

E[XY ] =
∫
x

∫
y
xyf(x, y)dxdy but X, Y are independent

=

=

=

Theorem:
Let X, Y be independent random variables and let g(x) and h(y) be functions of x and y
alone respectively. Then E[g(X)h(Y )] = [Eg(X)]E[h(Y )].

Proof: Use the proof of the previous theorem.
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Theorem:
Let g(x) be a function of X alone and h(y) be a function of Y alone. Then X, Y are inde-
pendent iff f(x, y) = g(x)h(y).

Proof:
Let c =

∫∞
−∞ g(x)dx and d =

∫∞
−∞ h(y)dy. Show that cd = 1.

Now find the marginal of X and the marginal of Y . Remember that to find the marginal of
X we integrate the joint pdf w.r.t. y. Here the joint pdf is given by f(x, y) = g(x)h(y).
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Exponential families

A probability density function or probability mass function is called an exponential family
if it can be expressed as

f(x|θ) = h(x)c(θ)exp

(
k∑
i=1

wi(θ)ti(x)

)
.

Note: h(x), t1(x), . . . , tk(x) do not depend on θ and c(θ) does not depend of x.

Example:
Consider X ∼ b(n, p) with n fixed. Show that p(x) =

(
n
x

)
px(1 − p)n−x can be expressed in

the exponential family form.

p(x) =

(
n

x

)
px(1− p)n−x

=

(
n

x

)(
p

1− p

)x
(1− p)n

=

(
n

x

)
(1− p)nelog(

p
1−p )x

=

(
n

x

)
(1− p)nexlog(

p
1−p )

Therefore this pmf is an exponential family with
h(x) =

(
n
x

)
, c(p) = (1− p)n, t1(x) = x,w1(p) = log p

1−p .

Example:
Let X ∼ Poisson(λ). Show that p(x) = λxe−λ

x!
is an exponential family.

Theorem:
Suppose a random variable X has a pdf or pmf that can be expressed in the form of expo-
nential family. Then,

(a) E

(
k∑
i=1

∂wi(θ)

∂θj
ti(x)

)
= − ∂

∂θj
logc(θ).

and

(b) var

(
k∑
i=1

∂wi(θ)

∂θj
ti(x)

)
= − ∂2

∂θ2
j

logc(θ)− E
(

k∑
i=1

∂2wi(θ)

∂θ2
j

ti(x)

)
.

Note: Here log is the natural logarithm.
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Proof of (a):

∫
x
f(x|θ)dx = 1∫

x
h(x)c(θ)exp

(
k∑
i=1

wi(θ)ti(x)

)
dx = 1

Differentiate both sides w.r.t. θj:∫
x
h(x)

∂c(θ)

∂θj
exp

(
k∑
i=1

wi(θ)ti(x)

)
dx

+
∫
x
h(x)c(θ)

k∑
i=1

∂wi(θ)

∂θj
ti(x)exp

(
k∑
i=1

wi(θ)ti(x)

)
dx = 0

Multiply the first integral by c(θ)

c(θ)
and note that ∂logc(θ)

∂θj
= ∂c(θ)

∂θj

1

c(θ)
.

∫
x
h(x)

∂c(θ)

∂θj
exp

(
k∑
i=1

wi(θ)ti(x)

)
c(θ)

c(θ)
dx

+
∫
x
h(x)c(θ)

k∑
i=1

∂wi(θ)

∂θj
ti(x)exp

(
k∑
i=1

wi(θ)ti(x)

)
dx = 0

After rearranging we get

∫
x

k∑
i=1

∂wi(θ)

∂θj
ti(x)h(x)c(θ)exp

(
k∑
i=1

wi(θ)ti(x)

)
dx =

−∂logc(θ)

∂θj

∫
x
h(x)c(θ)exp

(
k∑
i=1

wi(θ)ti(x)

)
dx

Or

E

(
k∑
i=1

∂wi(θ)

∂θj
ti(x)

)
= − ∂

∂θj
logc(θ).

To prove statement (b) of the theorem differentiate a second time and rearrange.

Example:
Let X ∼ Poisson(λ). Use the theorem above to show that E[X] = λ and var[X] = λ.
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