Statistics 100B

Instructor: Nicolas Christou

Random vectors and properties

Mean and variance of a random vector

Let
$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}$$
 be a random vector with $E\mathbf{Y} = \begin{pmatrix} EY_1 \\ EY_2 \\ \vdots \\ EY_n \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix} = \boldsymbol{\mu}$. The variance

covariance matrix of **Y** denoted with $\Sigma = var(\mathbf{Y})$ is defined as follows:

$$\operatorname{var}(\mathbf{Y}) = E(\mathbf{Y} - \boldsymbol{\mu})(\mathbf{Y} - \boldsymbol{\mu})'$$

= $E\begin{pmatrix}Y_1 - \mu_1 \\ Y_2 - \mu_2 \\ \vdots \\ Y_n - \mu_n\end{pmatrix}(Y_1 - \mu_1, Y_2 - \mu_2, \dots, Y_n - \mu_n)$
= $E\begin{pmatrix}(Y_1 - \mu_1)^2 & (Y_1 - \mu_1)(Y_2 - \mu_2) & \dots & (Y_1 - \mu_1)(Y_n - \mu_n) \\ (Y_2 - \mu_2)(Y_1 - \mu_1) & (Y_2 - \mu_2)^2 & \dots & (Y_2 - \mu_2)(Y_n - \mu_n) \\ \vdots & \vdots & \ddots & \vdots \\ (Y_n - \mu_n)(Y_1 - \mu_1) & (Y_n - \mu_n)(Y_2 - \mu_2) & \dots & (Y_n - \mu_n)^2\end{pmatrix}$

Take now expectation for each element of the matrix above. What do we get?

So Σ is the variance covariance matrix of the vector **Y**. It is symmetric and positive definite.

Suppose Y_1, \ldots, Y_n are independent identically distributed (i.i.d.) random variables. This means that $E[Y_i] = \mu, i = 1, \ldots, n$, $var[Y_i] = \sigma^2, i = 1, \ldots, n$ and $cov[Y_i, Y_j] = 0, i \neq j$. Find the expression of the mean vector of **Y** and the variance covariance matrix of **Y** using the vector $\mathbf{1} = (1, 1, \ldots, 1)'$ and the identity matrix **I** for this special case.

Two important results are given below: The mean and variance of a linear combination of the elements of a random vector and the mean and variance of a set of linear combinations of the elements of a random vector. In the first case we will examine $\mathbf{a}'\mathbf{Y} = a_1Y_1 + \ldots + a_nY_n$ while in the second case we will examine a set of p of these combinations.

1. Expected value and variance of a linear combination of **Y**. Let $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ be a vector of constants and let $q = \mathbf{a}'\mathbf{Y}$. Then $E(q) = E(\mathbf{a}'\mathbf{Y}) = \mathbf{a}'E(\mathbf{Y}) = \mathbf{a}'\boldsymbol{\mu}$. The variance of q can be found as follows:

found as follows:

$$var(q) = E(q - \mu_q)^2 = E(\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu})^2$$

= $E(\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu})(\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu})$
= $\mathbf{a}'E(\mathbf{Y} - \boldsymbol{\mu})(\mathbf{Y} - \boldsymbol{\mu})'\mathbf{a}$
= $\mathbf{a}'\boldsymbol{\Sigma}\mathbf{a}.$

Note: q is a scalar and therefore its variance should be a scalar and not a matrix. We can verify that $var(q) = \mathbf{a}' \boldsymbol{\Sigma} \mathbf{a}$ is 1×1 .

We can also express the variance of a linear combination using summation notation as follows:

$$\operatorname{var}\left(\sum_{i=1}^{n} a_{i}Y_{i}\right) = \operatorname{cov}\left(\sum_{i=1}^{n} a_{i}Y_{i}, \sum_{j=1}^{n} a_{j}Y_{j}\right)$$
$$= \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i}a_{j}\operatorname{cov}(Y_{i}, Y_{j})$$
$$= \sum_{i=1}^{n} a_{i}^{2}\operatorname{var}(Y_{i}) + \sum_{i=1}^{n} \sum_{j\neq i}^{n} a_{i}a_{j}\operatorname{cov}(Y_{i}, Y_{j})$$
$$= \sum_{i=1}^{n} a_{i}^{2}\operatorname{var}(Y_{i}) + 2\sum_{i=1}^{n-1} \sum_{j>i}^{n} a_{i}a_{j}\operatorname{cov}(Y_{i}, Y_{j})$$

Example;

Let
$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{pmatrix}$$
, $\boldsymbol{\mu} = \begin{pmatrix} 1 \\ 3 \\ 6 \\ 4 \end{pmatrix}$, and $\boldsymbol{\Sigma} = \begin{pmatrix} 3 & 2 & 3 & 3 \\ 2 & 5 & 5 & 4 \\ 3 & 5 & 9 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix}$. Find the mean and variance of $q = 4Y_1 - 2Y_2 + Y_3 + 3Y_4$.

2. Let **A** be a $p \times n$ matrix of constants. We will examine now $\mathbf{Q} = \mathbf{A}\mathbf{Y}$. Unlike q (see result (1) above), **Q** is a $p \times 1$ vector and therefore its variance should be a $p \times p$ matrix. Let's find the expected value of **Q** first. $E(\mathbf{Q}) = E(\mathbf{A}\mathbf{Y}) = \mathbf{A}E(\mathbf{Y}) = \mathbf{A}\mu$. For the variance of **Q** use the definition of the variance covariance matrix of a random vector.

 $var(\mathbf{Q}) =$

3. Expectation of a quadratic expression

Let **Y** be a random vector $n \times 1$ and let **A** be an $n \times n$ matrix of constants. Consider the quadratic expression **Y'AY**. We want to find the expected value of this quadratic expression. Such expressions appear in linear models and the result here provides a method for finding such expectations. For example, suppose n = 2. Find the expected value of

$$\left(\begin{array}{cc}Y_1 & Y_2\end{array}\right)\left(\begin{array}{cc}2 & 4\\5 & 3\end{array}\right)\left(\begin{array}{c}Y_1\\Y_2\end{array}\right) = 2Y_1^2 + 3Y_2^2 + 9Y_1Y_2$$

To find the expected value of this quadratic expression we will use properties of the trace of a square matrix. We can do this because $\mathbf{Y}'\mathbf{A}\mathbf{Y}$ is a scalar. We will also need this result: $E[\mathbf{Y}\mathbf{Y}'] = \mathbf{\Sigma} + \boldsymbol{\mu}\boldsymbol{\mu}'$. (Show this result using the definition of the variance covariance matrix).

$$E[\mathbf{Y}'\mathbf{A}\mathbf{Y}] = E[tr(\mathbf{Y}'\mathbf{A}\mathbf{Y})]$$

4. Other results:

a. Covariance between two linear combinations: $cov(\mathbf{a'Y},\mathbf{b'Y}) = \mathbf{a\Sigma b'}$. This is a scalar.

Example;

Let
$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ Y_3 \\ Y_4 \end{pmatrix}$$
, $\boldsymbol{\mu} = \begin{pmatrix} 1 \\ 3 \\ 6 \\ 4 \end{pmatrix}$, and $\boldsymbol{\Sigma} = \begin{pmatrix} 3 & 2 & 3 & 3 \\ 2 & 5 & 5 & 4 \\ 3 & 5 & 9 & 5 \\ 3 & 4 & 5 & 6 \end{pmatrix}$. Find the covariance between $q_1 = 4Y_1 - 2Y_2 + Y_3 + 3Y_4$ and $q_2 = Y_1 + 3Y_2 - 5Y_3 - 4Y_4$.

b. $\operatorname{cov}(\mathbf{AY}, \mathbf{BY}) = \mathbf{A\Sigma B'}$. This is a matrix.