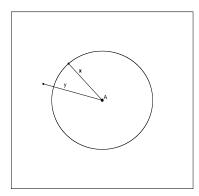
University of California, Los Angeles Department of Statistics


Statistics 100B

Instructor: Nicolas Christou

Practice problem - week 3

Answer the following questions:

a. Suppose the number of pine trees in a certain forest follows the Poisson distribution with parameter λ per meter². Suppose we randomly select a point (say A) in this forest (not a pine tree, just a point). Let X be the distance from this point to the nearest pine tree and let Y be the distance from this point to the second nearest pine tree (see graph below). Find the probability density function of X and then show that the random variable $\lambda \pi X^2$ follows the exponential distribution with mean 1. Note: The parameter λ here is given per meter². The parameter λ of a circle with radius r is $\lambda \pi r^2$.

- b. Refer to question (a). Find the probability density function of Y. (x is fixed when we are considering the pdf of Y.) Show that the random variable $\lambda \pi (Y^2 X^2)$ follows the exponential distribution with mean 1.
- c. Suppose now we randomly select m points in this forest. Find the distribution of $2\lambda \pi \sum_{i=1}^{m} X_i^2$ and the distribution of $2\lambda \pi \sum_{i=1}^{m} (Y_i^2 X_i^2)$.
- d. Let $s = \lambda \pi \sum_{i=1}^{m} X_i^2$ and $t = \lambda \pi \sum_{i=1}^{m} (Y_i^2 X_i^2)$. If s and t are independent show that $\frac{\sum_{i=1}^{m} X_i^2}{\sum_{i=1}^{m} Y_i^2} \sim \text{beta}(m, m)$.