\[\text{olf of } X: \quad P(X = x) = 1 - \frac{e^{-\lambda c}}{0!} = 1 - e^{-\lambda c} \]

Pdf of \(X: \quad f(x) = 2\pi x e^{-2\pi x} \]

Pdf of \(Y = \pi X^2 \)

Let \(W = \pi X^2 \)

\[F_W(w) = P(W \leq w) = P(\pi X^2 \leq w) = P(X^2 \leq \frac{w}{\pi}) \]

\[f_W(w) = \frac{1}{\pi} \frac{1}{2} w^{-\frac{1}{2}} e^{-\pi \frac{w}{2\pi}} = \frac{1}{\pi} \frac{1}{2} w^{-\frac{1}{2}} \] \(e^{-\pi \frac{w}{2\pi}} \]

\[w \sim \exp(1) \]

\[\text{Q is Poisson} \]
\[\Pr(y \leq y) = 1 - \Pr(\alpha = 0 \text{ in ring}) = 2(\pi y^2 - \pi x^2) \]

with \[\alpha = -2(\pi y^2 - \pi x^2) \]

\[= 1 - \int_0^\infty e^{-x} \, dx = 1 - e^{-x} \]

pdf of \(y \):
\[f(y) = 2\pi y \, e^{-\alpha(y^2 - x^2)} \]

pdf of \(\eta \, e^\alpha (y^2 - x^2) \):
\[\text{let } z = \eta \, e^\alpha (y^2 - x^2) \]
\[F_z(z) = \Pr(z \leq z) = \Pr \left(\eta \, e^\alpha (y^2 - x^2) \leq z \right) \]
\[= \Pr \left(y^2 \leq \frac{z}{\eta} \right) = \Pr \left(y \leq \sqrt{\frac{z + \eta x^2}{\eta}} \right) \]
\[= e^{-\ln \left(\sqrt{\frac{z + \eta x^2}{\eta}} \right)} = e^{-\ln (\sqrt{\frac{z + \eta x^2}{\eta}})} = e^{-\frac{z + \eta x^2}{\eta}} \]
\[\therefore z \sim \exp(1) \]
c. Suppose now we randomly select \(m \) points in this forest. Find the distribution of \(2\lambda^2 \sum_{i=1}^{m} X_i^2 \) and the distribution of \(2\lambda^2 \sum_{i=1}^{m} (Y_i^2 - X_i^2) \).

Since \(\lambda X_i^2 \sim \exp(1) \) and \(\lambda (Y_i^2 - X_i^2) \sim \exp(1) \)

It follows that

\[
2\lambda \sum_{i=1}^{m} X_i^2 \sim \chi^2_m
\]

\[
2\lambda \sum_{i=1}^{m} (Y_i^2 - X_i^2) \sim \chi^2_m
\]

d. Let \(s = \lambda \sum_{i=1}^{m} X_i^2 \) and \(t = \lambda \sum_{i=1}^{m} (Y_i^2 - X_i^2) \). If \(s \) and \(t \) are independent show that \(\frac{\sum_{i=1}^{m} X_i^2}{\sum_{i=1}^{m} Y_i^2} \sim \text{beta}(m, m) \).

\[
S \sim \Gamma(m, 1), \quad T \sim \Gamma(m, 1)
\]

Let \(U = \frac{S}{S + T} \) and \(V = S + T \). \(S \) and \(T \) are independent. \(f_{S,T}(s,t) = \frac{s^{m-1} t^{m-1} e^{-s}}{\Gamma(m) \Gamma(m)} \)

\[
f_{UV}(u,v) = \int_{s=0}^{1} f_{S,T}(s=g_1(u,v), t=g_2(u,v)) \, ds
\]

\[
= \left(\frac{u}{\Gamma(m)} \right)^{m-1} \left(\frac{v(1-u)}{\Gamma(m)} \right)^{m-1} \frac{v}{\Gamma(2m)} \exp(-uv)
\]

\[
= \frac{v^{m-1} e^{-(uv + v(1-u))}}{\Gamma(m) \Gamma(m) \Gamma(2m)} \frac{v}{\Gamma(2m)}
\]

\[
\lambda (1 - V) \sim \Gamma(2m, 1)
\]

\[
U \sim \text{beta}(m, m)
\]