Quiz 2 solutions

EXGRCISE 1:

$$
\begin{aligned}
& f(u, v)=f(u) \cdot f(v)=\frac{1}{\sqrt{2 n}} e^{-\frac{1}{2} u^{2}} \frac{v^{\frac{n}{2}-1} e^{-v / 2}}{r\left(\frac{n}{2}\right) 2^{n h}} \\
& J=\left|\begin{array}{cc}
\frac{\partial t}{J u} & \frac{\partial t}{J v} \\
\frac{\partial w}{\partial u} & \frac{\partial w}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{\sqrt{\frac{V}{n}}} & -\frac{1}{2} u\left(\frac{(}{n}\right)^{-3 / 2} \\
0 & 1
\end{array}\right|=\frac{1}{\sqrt{\frac{w}{n}}}
\end{aligned}
$$

Joint pDf of t and w :

$$
\begin{aligned}
& \text { Joint PDF of } \\
& f(t, w)=\frac{1}{\sqrt{2 n}} e^{-\frac{1}{2} t^{2} \frac{w}{n}} \frac{w^{\frac{n}{2}-1} e^{-w / 2}}{\Gamma\left(\frac{n}{2}\right) 2^{n / 2}} \sqrt{\frac{w}{n}} \\
& f(t, w)=\frac{1}{\sqrt{2 n n}} \frac{1}{\Gamma\left(\frac{n}{2}\right)} \frac{1}{2^{n / 2}} w^{\frac{n+1}{2}-1} e^{-w\left(\frac{1}{2} \frac{t^{2}}{n}+\frac{1}{2}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \text { THtaffork } \\
& \begin{aligned}
f(t)= & \int_{0}^{\infty} f(t, w) d w
\end{aligned}=\frac{\Gamma\left(\frac{n+1}{2}\right)\left(1+\frac{t^{2}}{n}\right)^{-n+1}}{\sqrt{7 n} \Gamma\left(\frac{n}{2}\right)} \int_{0}^{\infty} \frac{w^{\frac{n+1}{2}-1} e^{-w / 2}\left(1+\frac{t^{2}}{n}\right)}{\Gamma\left(\frac{n+1}{2}\right)\left(2 /\left(1+\frac{t^{2}}{n}\right)\right)^{n+1}} d w \\
& =
\end{aligned}
$$

THEREFORE

Exarcose 2

$$
\begin{aligned}
& \frac{G+r \cos E L}{M_{Q_{i}}(t)=(1-2 t)^{-\frac{p_{i}}{2}} e^{\theta_{i} \frac{t}{1-2 t}}} \begin{array}{l}
M_{y}(t)=M_{Q_{1}}(t) \cdots M_{Q_{k}}(t) \\
=(1-2 t) \quad e^{\frac{2 p_{i}}{2}} \text { sai } \frac{t}{1-2 t}
\end{array}, l
\end{aligned}
$$

Monent cencratint FUNETION of non- Chrinal x^{2} UITH DFGRFES of Fathon P_{i} ani) NoN Cfercranurty parameter θ_{i}.

$$
\psi(t)=\ln _{y}(t)=-\frac{\sum P_{i}}{2} \ln (1-2 t)
$$

$$
+\frac{t}{1-2 t} \sum \theta_{i}
$$

$$
\left.\psi^{\prime}(t)\right|_{t=0} G H E S H E M F A \sim \rightarrow \sum p_{i}+\sum \theta_{i}
$$

$\left.\psi^{\prime \prime}(t)\right) t=0$ GVES THE MARIANCE $\rightarrow 2\left(\Sigma p_{i}+2 \Sigma \theta_{i}\right)$

OR

$$
\begin{aligned}
E y & =E\left(\theta_{1}+\cdots+\theta_{k}\right) \\
& =E Q_{1}+\cdots+E Q_{k}
\end{aligned}
$$

And

$$
\begin{aligned}
\operatorname{mak}(Y) & =\operatorname{Van}\left(\theta_{1}+\cdots+\theta_{k}\right) \\
& =\operatorname{VAR}\left(\theta_{1}\right)+\cdots+\operatorname{VAR}\left(\theta_{k}\right)
\end{aligned}
$$

Bretuse
Q_{1}, \ldots, Q_{k} ARE indresidfror.
THEN
Find EQi And $\operatorname{Var}\left(\theta_{i}\right)$
USING $M Q_{i}(t)$.

Exercise 3
(a). $M_{x}(t)=\left(p_{1} e^{t_{1}}+p_{2} e^{t_{2}}+\cdots+p_{r} e^{t_{r}}\right)^{n}$

$$
\begin{aligned}
(a) \cdot M_{x}(\underline{t}) & =\left(p_{1} e+p_{2} e+\cdots+P_{r} e\right) \\
\therefore M_{x_{1}}\left(t_{1}\right) & =M_{\underline{x}}\left(t_{1}, 0,0_{1}, \cdots\right)=\left(p_{1} e^{t_{1}}+p_{2}+\cdots+p_{r}\right)^{4} \\
& =\left(p_{1} e^{t_{1}}+1-p_{1}\right)^{n} \rightarrow X_{1} \sim b\left(n_{1} p_{1}\right)
\end{aligned}
$$

(b). $E[\underline{X}]=E\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{r}\end{array}\right]=\left[\begin{array}{c}n p_{1} \\ \vdots \\ n p r\end{array}\right]$
variance covariance matrix of $\underset{\sim}{x}$:
THE VARIANCES ARE $n p_{i}\left(1-p_{i}\right), c=1, \ldots, r$
FOR THE COMAMANCES USE THE COROLLARY ON JUN MSS:

$$
\begin{aligned}
& \text { FOR THE COMARANCES USE THE COROLLALT } \\
& \Psi_{i}(t)=\frac{n p_{i} e^{t i}}{P_{1} e^{t}+\cdots+P_{r} e^{t r}} \text { AND } \psi_{i j}(t)=\frac{-P_{j} e^{t_{j}} n P_{i} e^{t_{i}}}{\left(P_{1} e^{t_{1}}+\cdots+p_{r} e^{t_{r}}\right)^{2}} \\
& \therefore \Psi_{i j}\binom{0}{\square}=\operatorname{Cor}\left(X_{i}, X_{j}\right)=-n p_{i} P_{j} .
\end{aligned}
$$

Exercise 4

$$
\overline{x_{i} \sim \exp \left(\frac{1}{i \theta}\right)} \rightarrow M_{x_{i}}(t)=(1-i \theta t)^{\prime}
$$

$L G \quad \hat{\theta}=\sum_{i=1}^{n} \frac{x_{i}}{n i}$

$$
\begin{aligned}
& L\left(T \quad \hat{\theta}=\sum_{i=1} \sqrt[n i]{ }\right. \\
& M_{\hat{\theta}}(t)=M_{\frac{x_{1}}{n}}(t) \cdot M_{\frac{x_{2}}{2^{2}}}(t) \cdots M_{\frac{x_{n}}{n^{2}}}(t)
\end{aligned}
$$

$$
\begin{aligned}
& =M_{x_{1}}\left(\frac{t}{n}\right) \cdot M_{x_{2}}\left(\frac{t}{2 n}\right) \ldots M_{x_{n}}\left(\frac{t}{n^{2}}\right) \\
& =\left(1-\theta \frac{t}{n}\right)^{-1}\left(1-\frac{2 \theta t}{2 n}\right)^{-1} \ldots\left(1-\frac{n \theta t}{n^{2}}\right)^{-1} \\
& =\left(1-\frac{\theta}{n} t\right)^{-n} \\
& \therefore \hat{\theta} \sim T\left(n, \frac{\theta}{n}\right)
\end{aligned}
$$

(b). $E \hat{\theta}^{-1}=\frac{\Gamma(n-1)\left(\frac{\theta}{n}\right)^{-1}}{\Gamma(n)}=\frac{n}{n-1} \cdot \frac{1}{\theta}$.
(cl. $\operatorname{MSE}\left(c \theta^{n-1}\right)=\operatorname{Mar}\left(c \cdot \hat{\theta}^{-1}\right)+B^{2}=*$

$$
\begin{array}{rl}
C C I & B=E \hat{\theta}^{-1}-\frac{1}{\theta}=\frac{1}{\theta(n-1)} \\
H & =C^{2}\left\{E\left(\hat{\theta}^{-2}\right)-\left[E \hat{\theta}^{-1}\right)^{2}\right\}+\frac{1}{\theta^{2}(n-1)^{2}} \\
= & c^{2}\left[\frac{\Gamma(n-2)\left(\frac{\theta}{n}\right)^{-2}}{\Gamma(n)}-\left(\frac{n}{n-1} \frac{1}{\theta}\right)^{2}\right]+\frac{1}{\theta^{2}(n-1)^{2}}
\end{array}
$$

TIAN $\frac{\partial M S E}{d c}=0$ AND SOLVE FORC.

Exercise 5

$$
f(x)=\frac{\alpha x^{\alpha-1}}{\theta^{\alpha}}, \quad \alpha>0, \theta>0
$$

θ is known.

$$
\begin{aligned}
& \theta \text { is known. } \\
& L=\frac{\alpha^{n}\left(x_{1} x_{2}-x_{n}\right)^{\alpha-1}}{\theta^{n \alpha}}=\frac{\alpha}{\theta^{\alpha \alpha}}\left(\Pi x_{i}\right)^{\alpha-1} \\
& L \theta g(u, \theta)=\frac{\alpha^{n}}{\theta^{\alpha}}\left(\Pi x_{i}\right)^{\alpha-1}
\end{aligned}
$$

$$
\operatorname{an}) \quad h(x)=1
$$

TIARRFNRE, USING THE FACTORIZATION THEORGM WF concluDE TWAT

$$
U=T \text { THEORGM WK US A SUFGILIENT }
$$ statistic for α.

