Problem 1

Answer the following questions:

a. Consider the random vector \(Y \) with mean vector \(\mu \) and variance covariance matrix \(\Sigma \). If \(a'Y \) follows univariate normal for every vector \(a \) show that \(Y \sim N(\mu, \Sigma) \).

b. Let \((X_i, Y_i), i = 1, 2, \ldots, n\) be a random sample from a bivariate normal distribution (the \(n \) pairs are independent). Consider the vector \(W = \begin{pmatrix} X \\ Y \end{pmatrix} \), where \(X = (X_1, X_2, \ldots, X_n) \) and \(Y = (Y_1, Y_2, \ldots, Y_n) \). Find the distribution of \(W \).

c. Refer to question (b). Find the conditional distribution of \(X \) given \(Y \).

d. Suppose \(\epsilon_0, \epsilon_1, \ldots, \epsilon_n \) are independent \(N(0, \sigma) \) and let \(Y_i = \epsilon_i + c\epsilon_{i-1} \), where \(c \) is a known constant. Show that \(Y = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix} \) follows multivariate normal. What is the mean and variance covariance matrix?

e. Let \(X_1, \ldots, X_n \) be i.i.d. random variables with \(X_i \sim N(\mu_1, 1) \) and Let \(Y_1, \ldots, Y_m \) be i.i.d. random variables with \(Y_i \sim N(\mu_2, 1) \). All the random variables are independent. What is the distribution of the expression \(\sum_{i=1}^n (X_i - \mu_1)^2 + \sum_{i=1}^m (Y_i - \mu_2)^2 \). What is the mean and variance of this expression?
Problem 2
Answer the following questions:

a. The multinomial distribution is defined as follows: A sequence of n independent experiments is performed and each experiment can result in one of r possible outcomes with probabilities p_1, p_2, \ldots, p_r with $\sum_{i=1}^{r} p_i = 1$. Let X_i be the number of the n experiments that result in outcome i, $i = 1, 2, \ldots, r$. Then, $P(X_1 = x_1, X_2 = x_2, \ldots, X_r = x_r) = \frac{n!}{n_1!n_2!\cdots n_r!} p_1^{x_1} p_2^{x_2} \cdots p_r^{x_r}$. Find the mean and variance covariance matrix of the vector $\mathbf{X} = \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_r \end{pmatrix}$

b. Refer to question (a). Find the variance of $\sum_{i=1}^{r} X_i$.

c. Let $M_{X_i,X_j}(t_i, t_j)$ be the joint moment generating function of X_i and X_j. Show that $\frac{\partial^2 M(0,0)}{\partial t_i \partial t_j} - \begin{bmatrix} \frac{\partial M(0,0)}{\partial t_i} \\ \frac{\partial M(0,0)}{\partial t_j} \end{bmatrix} = \text{cov}(X_i, X_j)$.

d. Suppose the random variable X has following pdf: $f(x) = \frac{2}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$, $0 < x < \infty$. Find the mean and variance of X without integration (by using a suitable transformation).

e. Suppose X_1, X_2, X_3 are independent with $X_1 \sim N(2, 2)$, $X_2 \sim N(5, 5)$, and $X_3 \sim N(4, 4)$. Let $Q = X_1 + 2X_2 - 3X_3 - 4$. Find the distribution of Q.
Problem 3
Answer the following questions:

a. Find the moment generating function of a Bernoulli random variable and use it to find the moment generating function of binomial. (This is a different method for finding the moment generating function of binomial that was discussed in class.)

b. Let X be a random variable with $E[X^m] = (m + 1)!2^m$, with $m = 1, 2, 3, \ldots$. Find the moment generating function of X and its distributions.

c. Let $X \sim \Gamma(\frac{n}{2}, \beta)$. Find the distribution of $Y = \frac{2X}{\beta}$ using the method of cdf and the method of moment generating functions.

d. Let U be random variable with moment-generating function $M_U(t) = e^{500t+5000t^2}$. Find $P(27100 < (U - 500)^2 < 50200)$.

e. Let X_1, X_2, \cdots, X_n be i.i.d. random variables and each one follows the exponential distribution with parameter λ. Show that $Q = 2\lambda \sum_{i=1}^{n} X_i$ follows the χ^2 distribution. What are the degrees of freedom.
Problem 4
Answer the following questions:

a. Suppose the number of pine trees in a certain forest follows the Poisson distribution with parameter λ per meter2. Suppose we randomly select a point (say A) in this forest (not a pine tree, just a point). Let X be the distance from this point to the nearest pine tree and let Y be the distance from this point to the second nearest pine tree (see graph below). Find the probability density function of X and then show that the random variable $\lambda \pi X^2$ follows the exponential distribution with mean 1. Note: The parameter λ here is given per meter2. The parameter λ of a circle with radius r is $\lambda \pi r^2$.

![Diagram of a forest with a closest and second closest pine tree to point A](image)

b. Explain how to compute the probability that the distance until we observe the first pine tree from point A is larger than c meters.

c. Refer to question (a). Find the probability density function of Y. (x is fixed when we are considering the pdf of Y.) Show that the random variable $\lambda \pi (Y^2 - X^2)$ follows the exponential distribution with mean 1.

d. Suppose now we randomly select m points in this forest. Show that $2 \lambda \pi \sum_{i=1}^{m} X_i^2$ and $2 \lambda \pi \sum_{i=1}^{m} (Y_i^2 - X_i^2)$ follow a gamma distribution. What are the parameters of these distributions?

e. Let $s = \lambda \pi \sum_{i=1}^{m} X_i^2$ and $t = \lambda \pi \sum_{i=1}^{m} (Y_i^2 - X_i^2)$. If s and t are independent show that $\frac{\sum_{i=1}^{m} X_i^2}{\sum_{i=1}^{m} Y_i^2} \sim$ beta(m, m).