Instructor: Nicolas Christou
Office: 8931 Math Sciences Bldg.
Telephone: (310) 206-4420
e-mail: nchristo@stat.ucla.edu
WWW: http://www.stat.ucla.edu/~nchristo/statistics100B/
Office hours: MWF 12:00 - 14:00, TR 16:00 - 18:00

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Day</th>
<th>Class Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture 2</td>
<td>TR</td>
<td>10:00 - 11:50</td>
<td>MS 5200</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Day</th>
<th>Discussion Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>2A</td>
<td>TR</td>
<td>08:00 - 08:50</td>
<td>Boelter 5419</td>
</tr>
<tr>
<td>2B</td>
<td>TR</td>
<td>09:00 - 09:50</td>
<td>Boelter 5419</td>
</tr>
</tbody>
</table>

RESOURCES:
Textbook (optional):
Handouts can be accessed at http://www.stat.ucla.edu/~nchristo/statistics100B/.

Probability and Statistics EBook (freely available at):

COURSE PREREQUISITES:
Statistics 100A or Mathematics 170A.

COURSE DESCRIPTION AND OBJECTIVES:
Statistics 100B mainly deals with parameter estimation of various distributions. The problem is stated as follows: Suppose X_1, X_2, \ldots, X_n are i.i.d. random variables from a distribution with pdf $f(x; \theta)$, where θ is unknown. Given this sample we would like to find an estimate of the parameter θ. We will also discuss properties of estimators, confidence intervals, and hypothesis testing. The $t, \chi^2,$ and F distributions will be discussed at the beginning of the course. They are very important in statistical inference. If time permits we will also discuss simple regression and correlation (this will be an introduction to Statistics 100C).

COURSE TOPICS
1. Exponential families.
2. Moment generating functions for one random variable.
3. Random vectors.
4. Joint moment generating functions for a random vector, multivariate normal distribution.
5. The central limit theorem and the law of large numbers. The distribution of the sample mean and sum of n independent and identically distributed random variables.
6. The χ^2, t, and F distributions.
11. Factorization theorem.
12. Minimal sufficiency and MVUE.
13. Lehmann and Scheffé theorem.
15. Confidence intervals.
COURSE POLICIES:
Please remember to turn off cell phones. The use of laptop computers will not be permitted in class unless there is a lab activity during lecture. Students needing academic accommodations based on a disability should contact the Center for Accessible Education (CAE) at (310) 825-1501 or in person at Murphy Hall A255. For more information visit http://www.cae.ucla.edu.

ACADEMIC INTEGRITY:
As a student and member of the University community, you are here to get an education and are, therefore, expected to demonstrate integrity in your academic endeavors. All students must uphold University of California Standards of Student Conduct as administered by the Office of the Dean of Students. Students are subject to disciplinary action for several types of misconduct, including but not limited to: cheating, multiple submissions, plagiarism, prohibited collaboration, facilitating academic dishonesty, or knowingly furnishing false information. You may have assignments or projects in which you work with a partner or with a group. For example, you are welcome, and even encouraged, to work with others to solve homework problems. Even though you are working together, the assignment you submit for a grade must be in your own words, unless you receive specific instructions to the contrary. For more information about academic integrity, please go to http://www.deanofstudents.ucla.edu/.

COURSE GRADES:
There will be two (2) exams and homework or labs that will be assigned every week. All assignments must be uploaded on CCLE for grading (https://ccle.ucla.edu). Late homework or labs will not be accepted and make-up exams will not be given. Being in class on time and fully participating is important for your understanding of the material and therefore for your success in the course. The tentative dates for the exams are shown below.

The course grade will be based on the calculation:

\[
\text{Final score} = 0.20 \times \text{Homework/Labs} + 0.40 \times \text{Midterm} + 0.40 \times \text{Final}
\]

COMMUNICATION:
Please keep a current e-mail address with my.ucla.edu in order to receive class announcements and reminders.

IMPORTANT DATES:
First class: 06 August.
Last class: 12 September.
Holidays: Labor Day, Monday, 02 September.

EXAMS:
Midterm exam: Monday, 26 August.
Final exam: Friday, 13 September.

Good Luck !!!