Problem 1 (25 points)
Consider the multiple regression model

\[y = X\beta + \epsilon, \]

with \(E(\epsilon) = 0 \) and \(\text{cov}(\epsilon) = \sigma^2 I. \)

Answer the following questions:

a. Show that the regression sum of squares can be expressed as:

\[SSR = \hat{\beta}'X'X\hat{\beta} - ny^2. \]

Hint: Express \(SSR = \sum_{i=1}^{n}(\hat{y}_i - \bar{y})^2 \) in vector notation.

b. Find \(E(\epsilon'\epsilon). \) Note: Do not assume that \(\epsilon \) is normal (so you cannot use the \(\chi^2 \) distribution)!
Problem 2 (25 points)

After fitting the multiple regression model \(y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \epsilon_i \), where \(E(\epsilon_i) = 0 \), \(E(\epsilon_i \epsilon_j) = 0 \) for \(i \neq j \), and \(\text{var}(\epsilon_i) = \sigma^2 \), to a data set with \(n = 15 \) observations it is found that \(s^2_e = 3 \) and

\[
(X'X)^{-1} = \begin{pmatrix}
0.5 & 0.3 & 0.2 & 0.6 \\
0.3 & 6.0 & 0.5 & 0.4 \\
0.2 & 0.5 & 0.2 & 0.7 \\
0.6 & 0.4 & 0.7 & 3.0
\end{pmatrix}.
\]

Answer the following questions:

a. Find the estimate of \(\text{var}(\hat{\beta}_1) \).

b. Find the estimate of \(\text{cov}(\hat{\beta}_1, \hat{\beta}_3) \).

c. Find the estimate of \(\text{corr}(\hat{\beta}_1, \hat{\beta}_3) \).

d. Find the estimate of \(\text{var}(\hat{\beta}_1 - \hat{\beta}_3) \).

e. Give the procedure that will test the hypothesis:

\[H_0 : \beta_0 - 2\beta_1 + 3\beta_2 - 5\beta_3 = 0 \]
\[H_a : \beta_0 - 2\beta_1 + 3\beta_2 - 5\beta_3 \neq 0 \]

Please show all your work! No calculations are necessary.
Problem 3 (25 points)
Part A:
Consider the simple regression model through the origin: \(y_i = \beta_1 x_i + \epsilon_i \), with \(E(\epsilon_i) = 0, \) \(\text{var}(\epsilon_i) = \sigma^2, \) \(E\epsilon_i \epsilon_j = 0, \) \(\text{and} \) \(\epsilon_i \sim N(0, \sigma). \) Let \(\hat{\beta}_1 \) and \(\hat{\sigma}^2 \) be the maximum likelihood estimators of \(\beta_1 \) and \(\sigma^2 \) respectively. Answer the following questions:

a. Find the Fisher information matrix for the vector \(\theta = (\beta_1, \sigma^2)' \).

b. What is the asymptotic distribution of \(\hat{\theta} = \begin{pmatrix} \hat{\beta}_1 \\ \hat{\sigma}^2 \end{pmatrix} \). Write the pdf of this distribution.

Part B:
The multiple regression model can be expressed as \(y_i = x_i' \beta + \epsilon_i \) with \(i = 1, \ldots, n \) where \(E(\epsilon_i) = 0, \) \(\text{var}(\epsilon_i) = \sigma^2, \) \(\text{and} \) \(\text{cov}(\epsilon_i, \epsilon_j) = 0 \) when \(i \neq j \). Note: \(x_i \) is the \(i \)th row of matrix \(X \). Answer the following questions:

a. Show that \(\hat{y}_i = x_i' \hat{\beta} \) is unbiased estimator of \(x_i' \beta \).

b. What is the variance of \(\hat{y}_i \)? Please remember this is a multiple regression model.

c. Does there exist any other linear unbiased estimator of \(x_i' \beta \) (say \(\hat{y}_i = x_i' b \)), with smaller variance than the variance of the estimator \(\hat{y}_i \)?
Problem 4 (25 points)
Researchers 1 and 2 were working independently on similar problems.

Using \(n_1 \) data points, researcher 1 formed the model \(y_1 = X_1 \beta + \epsilon_1 \), where \(y_1 \) is \(n_1 \times 1 \), \(X_1 \) is \(n_1 \times (k+1) \), \(\beta \) is \((k+1) \times 1 \), and \(\epsilon_1 \) is \(n_1 \times 1 \), with \(E(\epsilon_1) = 0 \) and \(\text{cov}(\epsilon_1) = \sigma^2 I \).

Using \(n_2 \) data points, researcher 2 formed the model \(y_2 = X_2 \beta + \epsilon_2 \), where \(y_2 \) is \(n_2 \times 1 \), \(X_2 \) is \(n_2 \times (k+1) \), \(\beta \) is \((k+1) \times 1 \), and \(\epsilon_2 \) is \(n_2 \times 1 \), with \(E(\epsilon_2) = 0 \) and \(\text{cov}(\epsilon_2) = \sigma^2 I \).

Note: Each researcher is trying to estimate the same coefficient vector \(\beta \).

Answer the following questions:

a. Suppose that the researchers worked independently. Give \(\hat{\beta}_1 \) and \(\hat{\beta}_2 \), their separate least squares estimates.

b. Suppose that they cooperate and pool their data. So now the model will be:

\[
\begin{pmatrix}
 y_1 \\
 y_2 \\
\end{pmatrix} =
\begin{pmatrix}
 X_1 \\
 X_2 \\
\end{pmatrix} \beta +
\begin{pmatrix}
 \epsilon_1 \\
 \epsilon_2 \\
\end{pmatrix}.
\]

Show that their combined least squares estimates are:

\[\hat{\beta} = (X_1'X_1 + X_2'X_2)^{-1}(X_1'y_1 + X_2'y_2). \]

c. Consider the case \(n_1 = n_2 \) and \(X_1 = X_2 \), but \(y_1 \) not necessarily equals to \(y_2 \). Now answer question (b) again.

d. Consider the situation in (c). Find the variance covariance matrix of \(\hat{\beta} \).