Exercise 1
Consider the models
\[Y = X\beta + \epsilon, \quad Y^* = X^*\beta + \epsilon^*, \]
where \(E(\epsilon) = 0, \) \(\text{cov}(\epsilon) = \sigma^2 I, \) \(Y^* = \Gamma Y, X^* = \Gamma X, \epsilon^* = \Gamma \epsilon, \) and \(\Gamma \) is a known \(n \times n \) orthogonal matrix. Here orthogonal means \(\Gamma' \Gamma = I. \) Show that:

a. \(E(\epsilon^*) = 0, \) and \(\text{cov}(\epsilon^*) = \sigma^2 I. \)

b. Show that \(\hat{\beta} = \hat{\beta}^* \) and \(s^2_e = s^*_{e^2}, \) where \(\hat{\beta} \) and \(\hat{\beta}^* \) are the least squares estimates of \(\beta \) of the two models.

Exercise 2
Show that when we do weighted least squares instead of weighting by \(\frac{1}{c_1^2}, \ldots, \frac{1}{c_n^2}, \) we had weighted by \(\frac{a}{c_1^2}, \ldots, \frac{a}{c_n^2} \) where \(a \) is any positive number, then \(\hat{\beta}_{WLS} \) and its variance-covariance matrix are unaffected.

Exercise 3
For the simple regression model without intercept \(y_i = \beta x_i + \epsilon_i \) assume that \(E(\epsilon_i) = 0, E(\epsilon_i \epsilon_j) = 0, \) and \(\text{var}(\epsilon_i) = \sigma^2 x_i. \) Find the weighted least squares estimate of \(\beta \) and obtain its variance.

Exercise 4
Consider the regression model through the origin \(y_i = \beta x_i + \epsilon_i \) with \(E(\epsilon_i) = 0, E(\epsilon_i \epsilon_j) = 0, \) and \(\text{var}(\epsilon_i) = \sigma^2 x_i^2. \) Derive the weighted least squares estimate of \(\beta \) and obtain its variance.

Exercise 5
Answer the following questions:

a. Assume that the columns of the matrix \(X \) in the model \(Y = X\beta + \epsilon, \epsilon \sim \text{MVN}(0, \sigma^2 I) \) are orthogonal. Show that \(\hat{\beta}_i \) and \(\hat{\beta}_j \) are independent.

b. Suppose an extra term is added to the model. So the model now is:
\[Y = X\beta + \gamma z + \epsilon. \]
If \(z \) is orthogonal to \(X \) show that the estimate of \(\beta \) in this model is the same as the estimate of the model of part (a).