University of California, Los Angeles Department of Statistics

Statistics 100C Instructor: Nicolas Christou

Partial regression

We have seen that if we partition the matrix $\mathbf{X} = (\mathbf{X_1}, \mathbf{X_2})$ and the vector $\boldsymbol{\beta} = \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix}$ we can obtain the estimate of $\boldsymbol{\beta_2}$ using the following two-step procedure:

- A. Run the partial regressions:
 - 1. Regress Y on X_1 to obtain the residuals $Y^* = (I H_1)Y$.
 - 2. Regress each column of X_2 on X_1 to obtain the residuals $X_2^* = (I H_1)X_2$.
- B. Obtain the estimate of β_2 by regressing \mathbf{Y}^* on \mathbf{X}_2^* . It is equal to $\hat{\beta}_{2,1} = (\mathbf{X}^*/\mathbf{X}^*)^{-1}\mathbf{X}^*/\mathbf{Y}^*$.

A general note:

The matrix $\mathbf{I} - \mathbf{H}$ is is called the residual maker matrix of the regression of \mathbf{Y} on \mathbf{X} . The residual vector is equal to $\mathbf{e} = (\mathbf{I} - \mathbf{H})\mathbf{Y}$.

Now consider the following two special cases:

a. Partition $\mathbf{X} = (\mathbf{1}, \mathbf{X}_{(\mathbf{0})})$ and the vector $\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \boldsymbol{\beta}_{(\mathbf{0})} \end{pmatrix}$. Use partial regression to estimate $\boldsymbol{\beta}_{(\mathbf{0})}$. What is the residual maker matrix in this case?

