University of California, Los Angeles Department of Statistics

Statistics 100C Instructor: Nicolas Christou

Centering and scaling Multicollinearity

The usual multiple regression model is $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$. If we partition $\mathbf{X} = (\mathbf{1}, \mathbf{X}_{(0)})$ and $\boldsymbol{\beta} = \begin{pmatrix} \beta_0 \\ \boldsymbol{\beta}_{(0)} \end{pmatrix}$ we can write the model as $\mathbf{y} = \beta_0 \mathbf{1} + \mathbf{X}_{(0)} \boldsymbol{\beta}_{(0)} + \boldsymbol{\epsilon}$. Suppose now we add and subtract $\frac{1}{n} \mathbf{1} \mathbf{1}' \mathbf{X}_{(0)} \boldsymbol{\beta}_{(0)}$. The model now is

$$\mathbf{y} = \mathbf{1} \left(\beta_0 + \frac{1}{n} \mathbf{1}' \mathbf{X}_{(\mathbf{0})} \boldsymbol{\beta}_{(\mathbf{0})} \right) + (\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}') \mathbf{X}_{(\mathbf{0})} \boldsymbol{\beta}_{(\mathbf{0})} + \epsilon$$

$$\mathbf{y} = \mathbf{1} \left(\beta_0 + \overline{\mathbf{x}}' \boldsymbol{\beta}_{(\mathbf{0})} \right) + (\mathbf{I} - \frac{1}{n} \mathbf{1} \mathbf{1}') \mathbf{X}_{(\mathbf{0})} \boldsymbol{\beta}_{(\mathbf{0})} + \epsilon$$

This is called the centered model, where,

 $\mathbf{y} = \gamma_0 \mathbf{1} + \mathbf{Z} \boldsymbol{\beta}_{(0)} + \boldsymbol{\epsilon}$

$$\mathbf{1} = \begin{pmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{pmatrix}, \ \boldsymbol{\beta}_{(\mathbf{0})} = \begin{pmatrix} \beta_1 \\ \beta_2 \\ \vdots \\ \beta_{k-1} \\ \beta_k \end{pmatrix}, \ \boldsymbol{\epsilon} = \begin{pmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_{n-1} \\ \epsilon_n \end{pmatrix}, \ \mathbf{Z} = \begin{pmatrix} z_{11} & z_{12} & z_{13} & \cdots & z_{1k} \\ z_{21} & z_{22} & z_{23} & \cdots & z_{2k} \\ z_{31} & z_{32} & z_{33} & \cdots & z_{3k} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ z_{n1} & z_{n2} & z_{n3} & \cdots & z_{nk} \end{pmatrix}.$$

Another way to express the model above is to look at the regression model equation for each y_i .

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \ldots + \beta_k x_{ik} + \epsilon_i.$$

After we add and subtract $\beta_i \bar{x}_i$ it becomes the "centered model":

$$y_{i} = \beta_{0} + \beta_{1}x_{i1} \pm \beta_{1}\bar{x}_{1} + \beta_{2}x_{i2} \pm \beta_{2}\bar{x}_{2} + \dots + \beta_{k}x_{ik} \pm \beta_{k}\bar{x}_{k} + \epsilon_{i}$$

$$y_{i} = (\beta_{0} + \beta_{1}\bar{x}_{1} + \beta_{2}\bar{x}_{2} + \dots + \beta_{k}\bar{x}_{k}) + \beta_{1}(x_{i1} - \bar{x}_{1}) + \beta_{2}(x_{i2} - \bar{x}_{2}) + \dots + \beta_{k}(x_{ik} - \bar{x}_{k}) + \epsilon_{i}$$

$$y_{i} = \gamma_{0} + \beta_{1}(x_{i1} - \bar{x}_{1}) + \beta_{2}(x_{i2} - \bar{x}_{2}) + \dots + \beta_{k}(x_{ik} - \bar{x}_{k}) + \epsilon_{i}$$

We can expressed y_i as

$$y_{i} = \gamma_{0} + \beta_{1}(x_{i1} - \bar{x}_{1}) + \beta_{2}(x_{i2} - \bar{x}_{2}) + \dots + \beta_{k}(x_{ik} - \bar{x}_{k}) + \epsilon_{i}$$

$$y_{i} = \gamma_{0} + \beta_{1}z_{i1} + \beta_{2}z_{i2} + \dots + \beta_{k}z_{ik} + \epsilon_{i}$$
(1)

Estimation of the centered model:

Centering and scaling:

We can now scale the predictors as follows. We multiply and divide each centered predictor in equation (1) by the quantity $\sqrt{\sum_{i=1}^{n}(x_{ij}-\bar{x}_{j})^{2}}$ for j=1...k to get:

$$y_{i} = \gamma_{0} + \beta_{1} \frac{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}} (x_{i1} - \bar{x}_{1}) + \dots + \beta_{k} \frac{\sqrt{\sum_{i=1}^{n} (x_{ik} - \bar{x}_{k})^{2}}}{\sqrt{\sum_{i=1}^{n} (x_{ik} - \bar{x}_{k})^{2}}} (x_{ik} - \bar{x}_{k}) + \epsilon_{i} \text{ or }$$

$$y_{i} = \gamma_{0} + \delta_{1} \frac{z_{i1}}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}} + \dots + \delta_{k} \frac{z_{ik}}{\sqrt{\sum_{i=1}^{n} (x_{ik} - \bar{x}_{k})^{2}}} + \epsilon_{i} \text{ or }$$

$$y_{i} = \gamma_{0} + \delta_{1} Z_{si1} + \dots + \delta_{k} Z_{sik} + \epsilon_{i},$$

This is the centered and scaled model, where,
$$\delta_j = \beta_j \sqrt{\sum_{i=1}^n (x_{ij} - \bar{x}_j)^2}$$
 and $Z_{sij} = \frac{x_{ij} - \bar{x}_j}{\sqrt{\sum_{i=1}^n (x_{ij} - \bar{x}_j)^2}}$.

We can also obtain the centered and scaled model in matrix form as follows.

$$\begin{aligned} \mathbf{y} &= \gamma_0 \mathbf{1} + \mathbf{Z} \boldsymbol{\beta}_{(\mathbf{0})} + \boldsymbol{\epsilon} \\ \mathbf{y} &= \gamma_0 \mathbf{1} + \mathbf{Z} \mathbf{D}^{-1} \mathbf{D} \boldsymbol{\beta}_{(\mathbf{0})} + \boldsymbol{\epsilon} \\ \mathbf{y} &= \gamma_0 \mathbf{1} + \mathbf{Z}_{\mathbf{s}} \boldsymbol{\delta}_{(\mathbf{0})} + \boldsymbol{\epsilon} \end{aligned}$$

where, $\mathbf{Z}\mathbf{s} = \mathbf{Z}\mathbf{D}^{-1}$ and $\delta_{(0)} = \mathbf{D}\beta_{(0)}$. The matrix \mathbf{D} is defined as

$$\mathbf{D} = \begin{pmatrix} \sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}} & 0 & 0 & \dots & 0 \\ 0 & 0 & 0 & \dots & 0 \\ \vdots & & \ddots & \vdots & \vdots & \vdots \\ \vdots & & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \sqrt{\sum_{i=1}^{n} (x_{ik} - \bar{x}_{k})^{2}} \end{pmatrix}$$

Estimation of the centered and scaled model: If we regress y on $Z_{s1}, Z_{s2}, \ldots, Z_{sk}$ we will obtain estimates for γ_0 and $\delta_{(0)}$. Therefore,

$$\left(\begin{array}{c} \hat{\gamma}_0 \\ \hat{\boldsymbol{\delta}}_{(\mathbf{0})} \end{array} \right) \quad = \quad \left[\left(\begin{array}{c} \mathbf{1}' \\ \mathbf{Z}\mathbf{s}' \end{array} \right) \left(\begin{array}{cc} \mathbf{1} & \mathbf{Z}\mathbf{s} \end{array} \right) \right]^{-1} \left(\begin{array}{c} \mathbf{1}' \\ \mathbf{Z}\mathbf{s}' \end{array} \right) \mathbf{y} = \left(\begin{array}{cc} \mathbf{1}'\mathbf{1} & \mathbf{1}'\mathbf{Z}\mathbf{s} \\ \mathbf{Z}\mathbf{s}'\mathbf{1} & \mathbf{Z}\mathbf{s}'\mathbf{Z}\mathbf{s} \end{array} \right) \left(\begin{array}{c} \mathbf{1}' \\ \mathbf{Z}\mathbf{s}' \end{array} \right) \mathbf{y}$$

But, $\mathbf{1'Zs} = \mathbf{0}$ and $\mathbf{Zs'1} = \mathbf{0}$. Therefore,

$$\begin{pmatrix} \hat{\gamma}_0 \\ \hat{\delta}_{(\mathbf{0})} \end{pmatrix} = \begin{pmatrix} n & \mathbf{0} \\ \mathbf{0} & \mathbf{Z}\mathbf{s}'\mathbf{Z}\mathbf{s} \end{pmatrix}^{-1} \begin{pmatrix} \mathbf{1}' \\ \mathbf{Z}\mathbf{s}' \end{pmatrix} \mathbf{y} = \begin{pmatrix} \frac{1}{n} & \mathbf{0} \\ \mathbf{0} & (\mathbf{Z}\mathbf{s}'\mathbf{Z}\mathbf{s})^{-1} \end{pmatrix} \begin{pmatrix} n\bar{y} \\ \mathbf{Z}\mathbf{s}'\mathbf{y} \end{pmatrix}$$

It follows that, $\hat{\gamma}_0 = \bar{y}$ and $\hat{\delta}_{(0)} = (\mathbf{Z}\mathbf{s}'\mathbf{Z}\mathbf{s})^{-1}\mathbf{Z}\mathbf{s}'\mathbf{y}$. But, $\mathbf{Z}\mathbf{s}'\mathbf{Z}\mathbf{s} = \mathbf{R}$ (correlation matrix of the k predictors see page 3). Finally, $\hat{\delta}_{(0)} = \mathbf{R}^{-1}\mathbf{Z}\mathbf{s}'\mathbf{y}$ and $var(\hat{\delta}_{(0)}) = \sigma^2\mathbf{R}^{-1}$.

Summary:

 $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ non-centered model

 $\mathbf{y} = \beta_0 \mathbf{1} + \mathbf{X}_{(0)} \boldsymbol{\beta}_{(0)} + \boldsymbol{\epsilon}$

 $\mathbf{y} = \gamma_0 \mathbf{1} + \mathbf{Z} \boldsymbol{\beta}_{(0)} + \boldsymbol{\epsilon}$ centered model

 $\mathbf{y} = \gamma_0 \mathbf{1} + \mathbf{Z_s} \delta_{(0)} + \boldsymbol{\epsilon}$ centered and scaled model

These three models have the same

fitted values

residuals

SSR

COL

SSE

 R^2

F statistic for testing the overall significance of the model t statistics for testing individual β_i coefficients.

Notes:

$$\mathbf{1}'\mathbf{Z} = 0'$$
 and $\mathbf{Z}'\mathbf{1} = \mathbf{0}$

$$\mathbf{1}'\mathbf{Z_s} = \mathbf{0}'$$
 and $\mathbf{Z_s'1} = \mathbf{0}$

We can verify that $\mathbf{Z}\mathbf{s}'\mathbf{Z}\mathbf{s} = \mathbf{R}$ from the following:

$\sqrt{\sum_{i=1}^{n} \frac{x_{1k} - \bar{x}_k}{(x_{ik} - \bar{x}_k)^2}}$	$\sqrt{\sum_{i=1}^{n} (x_{ik} - \bar{x}_k)^2}$	$\sqrt{\sum_{i=1}^{x_{3k}-\bar{x}_k} \sqrt{\sum_{i=1}^n (x_{ik}-\bar{x}_k)^2}}$			$\frac{x_{nk} - \bar{x}_k}{\sqrt{\sum_{i=1}^n \left(x_{ik} - \bar{x}_k\right)^2}} \ $
:	:	: :			:
$\frac{x_{12} - \bar{x}_2}{\sqrt{\sum_{i=1}^n (x_{i2} - \bar{x}_2)^2}} .$	$\frac{x_{22} - \bar{x}_2}{\sqrt{\sum_{i=1}^{n} (x_{i2} - \bar{x}_2)^2}} .$	$\sqrt{\sum_{i=1}^{n} \frac{x_{32} - \bar{x}_2}{(x_{i2} - \bar{x}_2)^2}} \ .$			$\sqrt{\sum_{i=1}^{n} (x_{i2} - \bar{x}_2)^2} .$
$\sqrt{\frac{x_{11} - \bar{x}_1}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}}}$	$\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_{1})^{2}}$	$\frac{x_{31} - \bar{x}_1}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}}$			$\sqrt{\frac{x_{n1} - \bar{x}_1}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}}}$
$\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}$	$\sqrt{\sum_{i=1}^{n} (x_{i2} - \bar{x}_2)^2}$	$\frac{x_{n3} - \bar{x}_3}{\sqrt{\sum_{i=1}^{n} (x_{i3} - \bar{x}_3)^2}}$			$\sqrt{\sum_{i=1}^{n} (x_i k - \bar{x}_k)^2} $
÷	÷	:			:
:			•••	•••	
$\frac{x_{21} - \bar{x}_1}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}}$	$\sqrt{\sum_{i=1}^{n} \frac{x_{22} - \bar{x}_2}{(x_{i2} - \bar{x}_2)^2}}$	$\frac{x_{23} - \bar{x}_3}{\sqrt{\sum_{i=1}^{n} (x_{i3} - \bar{x}_3)^2}}$			$\frac{x_{2k} - \bar{x}_k}{\sqrt{\sum_{i=1}^n (x_{ik} - \bar{x}_k)^2}}$
$\left(\begin{array}{c} \frac{x_{11} - \bar{x}_1}{\sqrt{\sum_{i=1}^n (x_{i1} - \bar{x}_1)^2}} \end{array} \right.$	$\frac{x_{12} - \bar{x}_2}{\sqrt{\sum_{i=1}^{n} (x_{i2} - \bar{x}_2)^2}}$	$\frac{x_{13} - \bar{x}_3}{\sqrt{\sum_{i=1}^{n} (x_{i3} - \bar{x}_3)^2}}$			$\sqrt{\frac{x_{1k} - \bar{x}_k}{\sqrt{\sum_{i=1}^n (x_{ik} - \bar{x}_k)^2}}}$
$\mathbf{Z}\mathbf{s}'\mathbf{Z}\mathbf{s}=$					

Therefore,

$$\mathbf{Z}\mathbf{s}'\mathbf{Z}\mathbf{s} = \begin{pmatrix} 1 & r_{12} & r_{13} & r_{14} & \cdots & r_{1k} \\ r_{21} & 1 & r_{23} & r_{24} & \cdots & r_{2k} \\ r_{31} & r_{32} & 1 & r_{34} & \cdots & r_{3k} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ r_{k1} & r_{k2} & r_{k3} & r_{k4} & \cdots & 1 \end{pmatrix} = \mathbf{R}.$$

Multicollinearity - theory

Using the centered and scaled model we showed that the variance covariance matrix of $\hat{\delta}_{(0)}$ is equal to $var(\hat{\delta}_{(0)}) = \sigma^2 \mathbf{R}^{-1}$. We want to find an expression for $var(\hat{\delta}_1)$. This is equal to $\sigma^2 \times (\text{position } (1,1) \text{ of } \mathbf{R}^{-1})$. First we will partition \mathbf{R} as follows:

$$\mathbf{R} = \begin{pmatrix} 1 & r_{12} & r_{13} & r_{14} & \dots & r_{1k} \\ r_{21} & 1 & r_{23} & r_{24} & \dots & r_{2k} \\ r_{31} & r_{32} & 1 & r_{34} & \dots & r_{3k} \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ \vdots & \vdots & \vdots & \vdots & \dots & \vdots \\ r_{k1} & r_{k2} & r_{k3} & r_{k4} & \dots & 1 \end{pmatrix} = \begin{pmatrix} 1 & \mathbf{r}' \\ \mathbf{r} & \mathbf{R}_{22} \end{pmatrix}.$$

To find the inverse of the partitioned matrix we will use the following result from linear algebra:

$$\left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array}\right)^{-1} = \left(\begin{array}{cc} {C_{11}}^{-1} & -{C_{11}}^{-1}C_{12} \\ -{C_{21}C_{11}}^{-1} & {A_{22}}^{-1} + {C_{21}C_{11}}^{-1}C_{12} \end{array}\right).$$

where,

$$C_{11} = A_{11} - A_{12}A_{22}^{-1}A_{21}$$

$$C_{12} = A_{12}A_{22}^{-1}$$

$$C_{21} = A_{22}^{-1}A_{21}$$

Using this result we can find the inverse of the partitioned \mathbf{R} matrix. In particular, we are interested in finding the element at position (1,1) of \mathbf{R}^{-1} . It will correspond to $\mathbf{C_{11}}^{-1}$ and it is equal to $(1-\mathbf{r'R_{22}}^{-1}\mathbf{r})^{-1}$. Therefore, $var(\hat{\delta}_1) = \frac{\sigma^2}{1-\mathbf{r'R_{22}}^{-1}\mathbf{r}}$. We will show now that $var(\hat{\delta}_1) = \frac{\sigma^2}{1-R_1^2}$, where R_1^2 is the R^2 of the regression of x_1 on x_2, x_3, \ldots, x_k .

Find R_1^2 using the centered and scaled model:

$$Zs_{i1} = \alpha_0 + \alpha_2 Zs_{i2} + \alpha_3 Zs_{i3} + \ldots + \alpha_k Zs_{ik} + \epsilon_i$$

As always, $R_1^2 = \frac{SSR}{SST}$. But here, $SST = \sum_{i=1}^n (Zs_{i1} - \bar{Z}s_1)^2 = \sum_{i=1}^n Zs_1^2 = \mathbf{Zs_1}'\mathbf{Zs_1} = 1$. This is true because

$$\mathbf{Zs_1} = \begin{pmatrix} \frac{\frac{x_{11} - \bar{x}_1}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}}}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}} \\ \frac{x_{21} - \bar{x}_1}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}} \\ \vdots \\ \frac{x_{n1} - \bar{x}_1}{\sqrt{\sum_{i=1}^{n} (x_{i1} - \bar{x}_1)^2}} \end{pmatrix}.$$

So far we showed that $R_1^2 = SSR$.

Now let's find SSR. We know that $SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \sum_{i=1}^{n} \hat{y}_i^2 - n\bar{y}^2 = \hat{\mathbf{y}}'\hat{\mathbf{y}} - n\bar{y}^2$. In the model we are using here, the response variable is Zs_1 , and because $\bar{Z}s_1 = 0$ it follows that $SSR = \hat{\mathbf{Z}}\mathbf{s_1}'\hat{\mathbf{Z}}\mathbf{s_1} = \mathbf{Z}\mathbf{s_1}'\mathbf{H}\mathbf{Z}\mathbf{s_1}$, where \mathbf{H} is the hat matrix constructed using the centered and scaled variables Zs_2, Zs_3, \ldots, Zs_k . Therefore, $SSR = \mathbf{Z}\mathbf{s}\mathbf{1}'\mathbf{Z}\mathbf{s}^*(\mathbf{Z}\mathbf{s}^{*'}\mathbf{Z}\mathbf{s}^{*})^{-1}\mathbf{Z}\mathbf{s}^{*'}\mathbf{Z}\mathbf{s_1} = \mathbf{r}'\mathbf{R_{22}}^{-1}\mathbf{r}$, where $\mathbf{Z}\mathbf{s}^*$ is $\mathbf{Z}\mathbf{s}$ without $\mathbf{Z}\mathbf{s_1}$. So $R_1^2 = \mathbf{r}'\mathbf{R_{22}}^{-1}\mathbf{r}$.

We just showed that $var(\hat{\delta}_1) = \frac{\sigma^2}{1-\mathbf{r}'\mathbf{R}_{22}^{-1}\mathbf{r}} = \frac{\sigma^2}{1-R_1^2}$. Since $\delta_j = \beta_j \sqrt{\sum_{i=1}^n (x_{ij} - \bar{x}_j)^2}$, it follows that $var(\hat{\beta}_1) = \frac{\sigma^2}{(1-R_1^2)\sum_{i=1}^n (x_{i1}-x_1)^2}$. We see that if the R^2 of the regression of predictor j on the other k-1predictors is large (close to 1) the variance of the predictor of $\hat{\beta}_j$ will be inflated, and therefore the corresponding t statistic will be small.

Variance inflation factor (VIF)

The variance inflation factor is given by $VIF_j = \frac{1}{1-R_j^2}$, and because $var(\hat{\beta}_j) = \frac{\sigma^2}{(1-R_1^2)\sum_{i=1}^n(x_{ij}-x_j)^2}$ it can be expressed as $VIF_j = \frac{\sum_{i=1}^n(x_{ij}-\bar{x}_j)^2}{\sigma^2}var(\hat{\beta}_j) = \frac{\sum_{i=1}^n(x_{ij}-\bar{x}_j)^2}{\sigma^2}\sigma^2V_{jj} = (n-1)S_{xj}^2V_{jj}$, where, V_{jj} is the (j,j)th element of $(\mathbf{X}'\mathbf{X})^{-1}$.

Geometric interpretation

Since $R_1^2 = SSR = SST - SSE = 1 - SSE$ it follows that $SSE = 1 - R_1^2$. But $SSE = \mathbf{e}'\mathbf{e}$ which represent the squared length of the residual vector of the model $Zs_{i1} = \alpha_0 + \alpha_2 Zs_{i2} + \alpha_3 Zs_{i3} + \ldots + \alpha_k Zs_{ik} + \epsilon_i$. Therefore, if $R_1^2 \approx 1$ it follows that the squared length of the residual vector is close to zero, which means the fitted vector (in this case $\hat{\mathbf{Z}}\mathbf{s_1}$) will be "close" to the subspace spanned by the columns of $\mathbf{Z}\mathbf{s_2}, \mathbf{Z}\mathbf{s_3}, \dots, \mathbf{Z}\mathbf{s_k}$.