Consider the regression model

\[y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{3i} + \beta_4 x_{4i} + \beta_5 x_{5i} + \epsilon_i, \quad i = 1, \ldots, n. \]

Also, \(E(\epsilon_i) = 0, \ E(\epsilon_i \epsilon_j) = 0 \) for \(i \neq j \), and \(\text{var}(\epsilon_i) = \sigma^2 \).

Suppose we want to test the following linear hypotheses:

a. \(H_0 : \beta_2 = 0 \)
 \(H_a : \beta_2 \neq 0 \)

b. \(H_0 : \beta_2 = 3 \)
 \(H_a : \beta_2 \neq 3 \)

c. \(H_0 : \beta_1 = \beta_5 \text{ or } \beta_1 - \beta_5 = 0 \)
 \(H_a : \beta_1 \neq \beta_5 \text{ or } \beta_1 - \beta_5 \neq 0 \)

d. \(H_0 : \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0 \)
 \(H_a : \text{At least one } \beta_i \neq 0 \)

This hypothesis can be expressed as:

\[H_0 : \beta(0) = 0 \]
\[H_a : \beta(0) \neq 0 \]

where, \(\beta(0) = (\beta_1, \beta_2, \beta_3, \beta_4, \beta_5)' \)

e. \(H_0 : (\beta_2, \beta_5)' = 0 \)
\[H_a : (\beta_2, \beta_5)' \neq 0 \]

All these hypotheses above can be expressed through the general linear hypothesis:

\[H_0 : \mathbf{C}\beta - \gamma = 0 \]
\[H_a : \mathbf{C}\beta - \gamma \neq 0 \]

Let's find the matrix \(\mathbf{C} \) and the vector \(\gamma \) for each one of the hypotheses (a)-(e) above:

a. \(\mathbf{C} = (0, 0, 1, 0, 0, 0) \) and \(\gamma = 0 \).

b. \(\mathbf{C} = (0, 0, 1, 0, 0, 0) \) and \(\gamma = 3 \).

c. \(\mathbf{C} = (0, 1, 0, 0, -1) \) and \(\gamma = 0 \)

d. This is also called the overall significance of the model. The matrix \(\mathbf{C} \) and the vector \(\gamma \) will be defined as follows:

\[
\mathbf{C}\beta - \gamma = 0
\]

\[
\begin{pmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\beta_5
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0 \\
0 \\
0 \\
0
\end{pmatrix}
\]

This will give us the hypothesis \(\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0 \).

e. We are testing here whether the two parameters \((\beta_2, \beta_5) \) are significant simultaneously. The matrix \(\mathbf{C} \) and the vector \(\gamma \) will be defined as follows:

\[
\mathbf{C}\beta - \gamma = 0
\]

\[
\begin{pmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\beta_0 \\
\beta_1 \\
\beta_2 \\
\beta_3 \\
\beta_4 \\
\beta_5
\end{pmatrix}
=
\begin{pmatrix}
0 \\
0
\end{pmatrix}
\]

This will give us the hypothesis \(\beta_2 = \beta_5 = 0 \).
Example:
Access the data:

```r
a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics100C/body_fat.txt", header=TRUE)
```

Dependent variable:

```
a$y
```

#Independent variables:

```
x1 <- a$x6
x2 <- a$x7
x3 <- a$x8
x4 <- a$x9
x5 <- a$x10
```

a. $H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$
 $H_a: \text{At least one } \beta_i \neq 0$

```r
ones <- rep(1, nrow(a))

#Construct the design matrix X:
X <- as.matrix(cbind(ones, x1, x2, x3, x4, x5))

#Estimate the beta vector:
beta_hat <- solve(t(X) %*% X) %*% t(X) %*% a$y

#Define the matrix C:
q <- c(0,1,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0)
C <- matrix(q, 5, 6, byrow=TRUE)

#Vector gamma:
g <- c(0,0,0,0,0)

#Compute se^2:
se2 <- (t(a$y) %*% a$y - t(beta_hat) %*% t(X) %*% a$y) / (nrow(a)-5-1)

#Compute the F statistics:
F <- (t(C%*%beta_hat-g)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))%*%(C%*%beta_hat-g)) / (5*se2)
```

b. $H_0: (\beta_2, \beta_5)' = 0$
 $H_a: (\beta_2, \beta_5)' \neq 0$

```r
#Define matrix C and vector gamma:
q <- c(0,0,1,0,0,0,0,0,0,0,1)
C <- matrix(q, 2, 6, byrow=TRUE)
g <- c(0,0)

F <- (t(C%*%beta_hat-g)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))%*%(C%*%beta_hat-g)) / (2*se2)
```

c. $H_0: \beta_2 = 0$
 $H_a: \beta_2 \neq 0$

```r
#Define matrix C and vector gamma:
q <- c(0,0,1,0,0,0)
C <- matrix(q, 1, 6, byrow=TRUE)
g <- c(0)

F <- (t(C%*%beta_hat-g)%*%solve(C%*%solve(t(X)%*%X)%*%t(C))%*%(C%*%beta_hat-g)) / (1*se2)
```