University of California, Los Angeles Department of Statistics

Statistics 100C Instructor: Nicolas Christou

Practice problems - week 8

Answer the following questions:

- a. Consider the multiple regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$. Suppose we are estimating $\boldsymbol{\beta}$ under the equality constraints $\mathbf{C}\boldsymbol{\beta} = \boldsymbol{\gamma}$, where \mathbf{C} is $m \times (k+1)$ matrix of known constants and $\boldsymbol{\gamma}$ is $m \times 1$ vector of known constants. Show that $\mathbf{e_c}'\mathbf{e_c} = \mathbf{e}'\mathbf{e} + (\hat{\boldsymbol{\beta}_c} \hat{\boldsymbol{\beta}})'\mathbf{X}'\mathbf{X}(\hat{\boldsymbol{\beta}_c} \hat{\boldsymbol{\beta}})$, where $\mathbf{e_c}$ are the constrained residuals and $\hat{\boldsymbol{\beta}_c}$ is the constrained least squares estimator of $\boldsymbol{\beta}$.
- b. Refer to question (a). Find $cov(\hat{\beta}, \hat{\beta}_c)$.
- c. Consider the multiple regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, with $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $\operatorname{var}(\boldsymbol{\epsilon}) = \sigma^2 \mathbf{I}$. Show that the regression sum of squares can be expressed as: $SSR = \hat{\boldsymbol{\beta}}' \mathbf{X}' \mathbf{X} \hat{\boldsymbol{\beta}} n \bar{y}^2$. Find E(SSR) using this equation.
- d. Consider the multiple regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, subject to a set of m linear restrictions of the form $\mathbf{C}\boldsymbol{\beta} = \boldsymbol{\gamma}$. The matrix \mathbf{C} is $m \times (k+1)$ and $\boldsymbol{\gamma}$ is $m \times 1$ vector. Suppose \mathbf{C} is partitioned as $(\mathbf{C_1}, \mathbf{C_2})$, where $\mathbf{C_2}$ is nonsingular. (The columns of $\mathbf{C_2}$ are the last m columns of \mathbf{C}). Transform the model to the canonical form as $\mathbf{Yr} = \mathbf{Xr}\boldsymbol{\beta}_1 + \boldsymbol{\epsilon}$ and explain how to estimate $\boldsymbol{\beta}$. Let $\hat{\boldsymbol{\beta}}_{1c}$ and $\hat{\boldsymbol{\beta}}_{2c}$ be the two constrained sub-vectors using the canonical form. Give an expression of $\mathrm{cov}(\hat{\boldsymbol{\beta}}_{1c}, \hat{\boldsymbol{\beta}}_{2c})$.
- e. Consider the multiple regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$. The Gauss-Markov conditions hold and also $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$. Evaluate $E\left(\mathbf{Y}'\mathbf{A}\mathbf{Y} \sigma^2\right)^2$ where $\mathbf{A} = \frac{1}{n-k+1}\left[\mathbf{I} \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'\right]$.
- f. Let X_1 equal a constant (column of ones) plus three predictors. Let X_2 contain three more predictors. Let y be the response variable. The Gauss-Markov conditions hold. Regress each of the three variables in X_2 on X_1 and obtain the residuals X_2^* . Regress y on X_1 and X_2^* . How do your results compare to the results of the regression of y on X_1 and X_2 ? The comparison you are making is between the least squares coefficients of the two regression models. Derive the result theoretically.
- g. Consider the multiple regression model $\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$ subject to a set of linear constraints of the form $\mathbf{C}\boldsymbol{\beta} = \boldsymbol{\gamma}$, where \mathbf{C} is $m \times (k+1)$ matrix and $\boldsymbol{\gamma}$ is $m \times 1$ vector. The Gauss-Markov conditions hold and also $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$. Transform the model into the canonical form and find the distribution of $\frac{\left(\hat{\boldsymbol{\beta}}_{1c} \boldsymbol{\beta}_{1c}\right)' \mathbf{x}'_{1r} \mathbf{x}_{1r} \left(\hat{\boldsymbol{\beta}}_{1c} \boldsymbol{\beta}_{1c}\right)}{\sigma^2}.$
- h. Consider the multiple regression model $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\epsilon}$, subject to a set of m linear restrictions of the form $\mathbf{C}\boldsymbol{\beta} = \boldsymbol{\gamma}$ with $\boldsymbol{\gamma} \neq \mathbf{0}$. The matrix \mathbf{C} is $m \times (k+1)$ and it can be partitioned in $(\mathbf{C_1}, \mathbf{C_2})$, where either $\mathbf{C_1}$ or $\mathbf{C_2}$ is nonsingular. Transform the model to the canonical form as $\mathbf{Yr} = \mathbf{Xr}\boldsymbol{\beta_1} + \boldsymbol{\epsilon}$ and explain how to estimate the slopes of the transformed columns of \mathbf{X} using partial regression.
- i. Consider the multiple regression model. Show that $\sum_{i=1}^{n} (y_i \bar{y})(\hat{y}_i \bar{y}) = \mathbf{Y}'(\mathbf{I} \frac{1}{n}\mathbf{1}\mathbf{1}')'(\mathbf{H} \frac{1}{n}\mathbf{1}\mathbf{1}')\mathbf{Y} = SSR$, where $\mathbf{1} = (1, 1, \dots, 1)'$.
- j. Consider the usual hat matrix \mathbf{H} which is symmetric and idempotent. We can use spectral decomposition and write $\mathbf{H} = \mathbf{P} \mathbf{\Lambda} \mathbf{P}'$. The eigenvalues of \mathbf{H} are 0 or 1, and there k+1 eigenvalues equal to 1, because $tr(\mathbf{H}) = k+1$. Partition $\mathbf{P} = (\mathbf{E}, \mathbf{F})$ where \mathbf{E} is $n \times (k+1)$ and show that $\mathbf{E} \mathbf{E}' = \mathbf{H}$ and $\mathbf{E}' \mathbf{E} = \mathbf{I}_{k+1}$.