University of California, Los Angeles Department of Statistics

Statistics 100C Instructor: Nicolas Christou

Week 9 - practice problems

Exercise 1

Consider the model $\mathbf{y} = \mu \mathbf{1} + \boldsymbol{\epsilon}$, where $E(\boldsymbol{\epsilon}) = \mathbf{0}$ and $var(\boldsymbol{\epsilon}) = \boldsymbol{\Sigma}$. The entries of $\boldsymbol{\Sigma}$ are computed using $var(Y_i) = \sigma^2, i = 1, \ldots, n$ and $cov(Y_i, Y_j) = \rho \sigma^2, i \neq j$, with σ^2 and ρ known constants. Suppose the prediction of a new observation Y_0 is of interest. Assume that $\hat{Y}_0 = \mathbf{w}'\mathbf{Y}$ and $E(\hat{Y}_0) = \mu$. By minimizing the mean-squared error, $E(Y_0 - \hat{Y}_0)^2$ show that $\hat{Y}_0 = \hat{\mu} + \mathbf{c}'\boldsymbol{\Sigma}^{-1}(\mathbf{Y} - \hat{\mu}\mathbf{1})$. where $\hat{\mu}$ is the generalized least squares estimate of μ . Note: To find the entries of \mathbf{c} it is reasonable to assume that the new observation Y_0 is also correlated with \mathbf{y} , i.e., $cov(Y_i, Y_0) = \rho \sigma^2, i = 1, \ldots, n$.

Exercise 2

Researchers 1 and 2 were working on similar problems.

Using n_1 data points, researcher 1 formed the model $\mathbf{y_1} = \mathbf{X_1}\boldsymbol{\beta} + \boldsymbol{\epsilon_1}$, where $\mathbf{y_1}$ is $n_1 \times 1$, $\mathbf{X_1}$ is $n_1 \times (k+1)$, $\boldsymbol{\beta}$ is $(k+1) \times 1$, and $\boldsymbol{\epsilon_1}$ is $n_1 \times 1$, with $E(\boldsymbol{\epsilon_1}) = \mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\epsilon_1}) = \sigma^2 \mathbf{I}$.

Using n_2 data points, researcher 2 formed the model $\mathbf{y_2} = \mathbf{X_2}\boldsymbol{\beta} + \boldsymbol{\epsilon_2}$, where $\mathbf{y_2}$ is $n_2 \times 1$, $\mathbf{X_2}$ is $n_2 \times (k+1)$, $\boldsymbol{\beta}$ is $(k+1) \times 1$, and $\boldsymbol{\epsilon_2}$ is $n_2 \times 1$, with $E(\boldsymbol{\epsilon_2}) = \mathbf{0}$ and $\operatorname{cov}(\boldsymbol{\epsilon_2}) = \sigma^2 \mathbf{I}$.

Note: Each researcher is trying to estimate the same coefficient vector $\boldsymbol{\beta}$.

Answer the following questions:

- a. Suppose that the researchers worked independently. Give $\hat{\beta}_1$ and $\hat{\beta}_2$, their separate least squares estimators.
- b. Suppose that they cooperate and pool their data. So now the model will be:

$$\left(egin{array}{c} \mathbf{y_1} \\ \mathbf{y_2} \end{array}
ight) = \left(egin{array}{c} \mathbf{x_1} \\ \mathbf{x_2} \end{array}
ight) oldsymbol{eta} + \left(egin{array}{c} oldsymbol{\epsilon_1} \\ oldsymbol{\epsilon_2} \end{array}
ight).$$

Find the combined least squares estimator.

- c. Consider the case $n_1 = n_2$ and $\mathbf{X}_1 = \mathbf{X}_2$, but \mathbf{y}_1 not necessarily equals to \mathbf{y}_2 . Now answer question (b) again.
- d. Consider the situation in (c). Find the variance covariance matrix of $\hat{\beta}$.
- e. Consider again the situation in (c). Now assume that for researcher 2 we have $var(\epsilon_2) = c\sigma^2 \mathbf{I}$, while $var(\epsilon_1) = \sigma^2 \mathbf{I}$. Write the matrix **W** to be used in weighted least squares.

Exercise 3

Consider the centered and scaled model with two predictors: $y_i = \gamma_0 + \delta_1 Z s_{i1} + \delta_2 Z s_{i2} + \epsilon_i$. Suppose, $\epsilon_i \sim N(0, 1)$. Show that the test statistic for testing $H_0: \delta_2 = 0$ follows N(0, 1). Now consider the model $y_i = \gamma_0 + \delta_1 Z s_{i1} + \epsilon_i$. Does the test statistic for testing $H_0: \delta_1 = 0$ in this model follow N(0, 1) too? Please explain.