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 Econometrica, Vol. 28, 3 (July 1960)

 TESTS OF EQUALITY BETWEEN SETS OF COEFFICIENTS IN TWO

 LINEAR REGRESSIONS1

 BY GREGORY C. CHOW

 Having estimated a linear regression with p coefficients, one may wish to

 test whether m additional observations belong to the same regression. This
 paper presents systematically the tests involved, relates the prediction in-

 terval (for m = 1) and the analysis of covariance (for m > p) within the
 framework of general linear hypothesis (for any m), and extends the results

 to testing the equality between subsets of coefficients.

 1. INTRODUCTION

 THE MODEL of normal linear regression has often been widely applied to the

 measurement of economic relationships. In studies of the consumption

 function, the mean of consumption is assumed to be a linear function of
 income and other variables. In studies of consumer demand, the quantity

 of a commodity is regressed linearly on its price, income, and perhaps the

 price of an important complement or substitute. In studies of business
 investment, linear regressions on profits, sales, liquid asset holdings, and

 the interest rate, have been estimated. Other notable examples include

 empirical studies of dividend policy, of prices of corporate stocks, and
 of cost and supply functions.

 When a linear regression is used to represent an economic relationship,
 the question often arises as to whether the relationship remains stable in
 two periods of time, or whether the same relationship holds for two different
 groups of economic units. Is the consumption pattern of the American

 people today the same as it was before World War II? Do the firms in the
 steel industry and the firms in the chemical industry have similar dividend
 policies? Statistically these questions can be answered by testing whether

 two sets of observations can be regarded as belonging to the same regression
 model.

 Often there is no economic rationale in assuming that two relationships
 are completely the same. It may be more reasonable to suppose that only
 parts of the relationships are identical in two periods, or for two groups.

 Maybe the price elasticity of demand for a certain food product has not
 changed since World War II, while the income elasticity has changed.
 Maybe the investments of two groups of firms are affected in the same
 manner by profits, but not by liquid assets. Statistically, we are asking
 whether subsets of coefficients in two regressions are equal.

 1 An early draft of this paper has been revised after helpful comments from William
 Kruskal, Edwin Kuh, and David L. Wallace, to all of whom I am grateful.
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 592 GREGORY C. CHOW

 To state our problems more formally, let y be the dependent variable,

 and xi, X2,. . ., xp be the explanatory variables. Assume that there is a
 sample of n observations. These observations are governed by a model of

 normal linear regression. In matrix notations, the model is:

 Yi -XllXX2 ... Xlp #1 81
 Y2 X21X22 ... X2p /32 82

 _Yn_ XnlXn2 ... * Xnp _ _8n

 Here the x's are p fixed variates. The fl's are the regression coefficients- 1
 is the intercept if xi is set identically equal to one. The 8's are independent

 and normally distributed, each with mean zero and standard deviation C.
 Assuming n > p and nonsingularity of the X matrix, we can estimate the

 parameters 3i4, /2, . .., f3p and a. Our problems are the testing of whether m
 additional observations are from the same regression as the first sample of n

 observations, and the testing of whether subsets of coefficients in the two

 regressions are identical. The present paper is devoted to a systematic and

 unified treatment of these tests.

 To test the hypothesis that both samples belong to the same regression,

 the well-known prediction interval [8] can be used when the number m of

 observations in the second sample equals one, and the analysis of covariance

 [7] can be used when m > p. We will present two tests for the case 2 < m

 < p. The first test, to be presented in Section 2, is based on a prediction
 interval for the mean of m additional observations. The second test is an

 F test, to be developed in Section 3. The relationship among this F test, the
 prediction interval, and the analysis of covariance will be explained in

 Section 4. In Section 5, our results will be extended to testing the equality

 between subsets of regression coefficients in the two regressions. Two

 examples of econometric applications are given in Section 6. These examples
 are concerned with the temporal stability of a statistical demand function

 for automobile ownership, and of a statistical demand function for new

 automobiles. It was through these examples that I became interested

 in the tests presented in this paper.

 2. PREDICTION INTERVAL FOR THE MEAN OF M ADDITIONAL OBSERVATIONS

 It is straightforward to extend the prediction interval idea from one

 observation to the arithmetic mean of m observations.

 First, let us rewrite the model in Section 1 briefly as

 (1) y Xli + l
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 TESTS OF EQUALITY 593

 where both yi and 81 are column vectors with n elements, X1 is a nonsingular

 n by p matrix, and f3i is the column vector of the p regression coefficients.
 The subscript 1 denotes the first sample of n observations. The least-

 squares estimator of f3i from this first sample is given by:

 (2) l= (XiXi)-1 Xi yi = 1 + (XXl)- Xi 81

 XjXl is the cross-product matrix of the p x's from the first sample.

 Let the m additional observations Y2 of the dependent variable be speci-
 fied by the model

 (3) y2 =X22 + -822

 X2 is a nonsingular m by p matrix, with its m rows representing the m
 new observations on the p explanatory variables. 82 is normally distributed

 with the covariance matrix 12. If we form the difference between the

 vector Y2 and the vector of predictions based on the regression estimated
 by the first n observations, we have, incorporating the relations (2) and (3),

 (4) d = Y2 - X2b X2-2 X241 + 82 - X2(XlXl)-1 Xj8i1.

 The expectation of d is

 (5) E(d) X22 -X2#1

 Because of the independence of 82 and 81, the covariance matrix of d be-
 comes

 Cov (d) CoV (82) + CoV [X2(XlXl)-1 X18i]

 (6) -= J2 + X2(XiXl)-1 Xl'(Cov 81) Xi(XiXl)-1 X2

 = [I +X2(XiX )1X2]a2.

 In the special case when m = 1, both Y2 and d become scalars, and X2
 becomes a row vector. From (6), the variance of d in this special case will be

 (7) Var (d) = [1 + X2(XlXl)-1 X]a2

 a2 can be estimated by s2, the (unbiased) square of the standard error from

 the first n observations. Under the null hypothesis that P2 = f 9 the
 expectation of d given in (5) will be zero, and the ratio

 (8) ~~~~~~~d2
 (8) [1 ? X2(X'Xl)-1 X2] s1

 will be distributed as F(1, n - p). This test, which is based on the prediction
 interval for one new observation, can be found in [8].
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 594 GREGORY C. CHOW

 When we have m new observations and thus m differences dl, d2, ..., dm,
 we may consider the average.

 - I m
 (9) d - d

 i=1

 Given the covariance matrix of d in (6) above, the variance of d is

 (10) Var(d) 62 Var [Edi]= 2 ([I... 1] [I+ X2(XiX1)- 2X] []}

 Similarly, under the null hypothesis that P2 =1,

 K]dI22
 { 1 1] [I + X2(Xl"Xl)-' X2"] []}

 will be distributed as F(1, n -p).
 The use of a d test can be found in reference [4], although the formula

 given in the Appendix of this reference is incorrect.2 There is little rationale
 in using d for the purpose of testing. The test is obviously weak against a
 number of alternative hypothesis. One can envisage many situations in
 which d is small, not because the new' m observations have come from the
 same regression, but because their deviations cancel out. The usefulness of
 deriving the distribution of d lies probably more in the construction of pre-
 diction intervals for the mean of additional observations-in so far as the
 mean is of interest.

 3. USE OF F RATIO FOR TESTING THAT E(d) IS A ZERO VECTOR

 Instead of changing the null hypothesis P2 = 1 = # to the hypothesis
 E(d) = 0, consider the quadratic form d' (Cov d)1d. It follows from(4) and (6)
 that

 (1 2) d'(Cov d) -1 d= [2X2 - 4X2] [I+X2(XiXi)-1 X2]-1 [X2#2 - X241] + ?

 [eiE2] 1-X(XiXl) -1 X.] [I +X2(XlX) -1X2] -1[-X2(XiXl) -1X I] 8 ] -2

 The last term is a quadratic form in with rank n-note that [I + X2

 (X'X,)-1 X' -1 is m by m. It will be equal to d'(Cov d)'- d under the null
 hypothesis that P2 = Pi, as can easily be seen from (12). Therefore under
 the null hypothesis, d'(Cov d)-ld will follow X2(m) distribution; whereas
 under the alternative hypothesis P2 = P2, d'(Cov d) -ld will follow a non-
 central x2 distribution.

 2 I am indebted to Robert Solow for pointing out this reference and the errors
 therein.
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 TESTS OF EQUALITY 595

 It is well known that the square of the standard error from the first
 2

 regression, SI, times (n - p)/a2, follows X2(- p). This X2(n p) is inde-
 2

 pendent of d = Y2- X2b1. si is independent of bi and is certainly indepen-
 dent of Y2. Therefore, under the null hypothesis, the ratio

 d'(Cov d)-' d - d'[I + X2(XjXi)-l X2Q-1 d
 (13) s (-? 1 sm

 ~2 S(pM
 0r2 '(n -f

 will follow F(m, n -). Since the numerator of (13) will have a non-central

 x2 distribution when P2 # fl, the upper-tail F test can appropriately be
 used. Clearly the test (13) reduces to the prediction interval (8) when m = 1.

 4. RELATIONSHIPS OF PREDICTION INTERVAL AND ANALYSIS OF COVARIANCE

 TO THEORY OF LINEAR HYPOTHESES

 This section shows the relationships among the F test of (13), the predic-
 tion interval for one additional observation, and the analysis of covariance
 (for m > p). All three methods are special applications of the theory of
 testing general linear hypotheses. It will therefore be convenient to summa-
 rize first the theory of linear hypotheses as applied to testing the homogeneity
 of the (entire) sets of coefficients in two regressions. The size m of the second
 sample will first be assumed to be larger than j, and then reduced to one.

 In our context, the model of general linear hypotheses takes the form3

 (14) yi - XluPl + 0 l2 + 81
 y2 - ? O 1 +X242 + 82

 or

 [y2] [? 0] [0] + 82]

 Under the-null hypothesis (Ho: ,u = P2 = fi), the model becomes

 (15) [+] [X] +

 The sum of squares of the residuals under Ho will be shown to equal the
 sum of squares of residuals under the alternative hypothesis (Ha: Pi # f2)
 plus the sum of squares of the deviations between the two sets of estimates
 of y under these two hypotheses. The ratio between the latter two sums,
 adjusted for their numbers of degrees of freedom, will be shown to follow
 an F distribution if the null hypothesis is true.

 3 The developments here follow, and are special applications of, Kempthorne [6].
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 596 GREGORY C. CHOW

 If the null hypothesis is true, the least-squares (also maximum likelihood)

 estimator of fi, denoted by bo, is

 (16) bo [(X' X2) X)]- [X X2] [Yi
 ' ' -1 ' t rYll, '2-12 1 2 Y2

 = [XXIl + X2X2]l [X X'] [Y] - + [X/X + XX2] -1 [X1 X2] [1]

 The residuals from this regression are:

 (17) [Yi]- [Xi] bo - [X2X] ? [81] [X2] A

 [X2] [XiXl + X2X2]-1 [X X2] [ 81]

 [I -(Xi) (XIXi + XIX2)l (X' X')] [81]

 The sum of squares of the residuals under Ho can be written as

 (18) - (Xl) bo 2b=o (X2) b] [Q'l) -(X) b]

 [8j82] [I (X1) (XXIl + X'X2) -1 (X'X')] [81]

 Since these residuals are from a regression of n + m observations on p
 explanatory variables, the quadratic form (18) in the 8's has rank n + M- p.4

 If the alternative hypothesis (Ha: l =A # 2) is true, we are back to the
 model (14), and the least-squares estimators of flu and fl2 are

 (1)_l xX - x 1 rYll r(XiX1) -1 XI
 (b21] 0 X2X21 [o X2l [y2j L(X2X2)-1 X2 Y2]

 The residuals under Ha will be

 (20) rYl -Xb [I - X (XiX1) -1 Xi] 1 Ly2 - X2b2] L[I - X2 (x2X2)-1 X'2] 82]

 Similarly, the sum of squares of these residuals will be

 y,- X1b1 2
 (21) y2-X2b2 = jJyu-Xubujj2 + IjY2-X2b2j12

 = -I X1(XlX1)-1 Xl]81 + 8' [I - X2(X2X2)-1 X'] 82
 Since the last two quadratic forms have ranks n - p and m - p respectively,
 and since 81 and 82 are independent, the rank of the quadratic form (21)
 willben +m- 2p.

 4 For a proof of this, see Kempthorne [6].
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 TESTS OF EQUALITY 597

 Now the sum of squares (18) under Ho will be decomposed into the sum

 of squares (21) under Ha plus the sum of squares of the differences

 [Xibi - X1bo] and [X2b2 - X2bo]

 First start from the identity

 (22) [yi- XiNo] y1-Xib2 + [X2b -X2bo]
 Summing the squares of the elements on both sides of (22) gives

 yi- Xibo02 yy -Xibi 2 X1b1- X1bo2
 (23) Y2 - X2bo Y2 - X2b2 ? X2b2 - X2bo

 because the cross-product term on the right side of (23) can easily be seen

 to be zero. To economize space, (23) will also be written as

 (24) Ql =Q2 +Q3 .

 We will proceed to show that the rank of the quadratic form Q3 can at
 most be p. From (16) and (19), it follows that

 (25) [X/X1l + X'X2]bo = Xiyl + Xy2 XXbXib + X2X2b2
 which implies

 (26) b2 -b(X2X2)-1 XiX1 (b1 - bo)

 Substituting (26) into Q3, we have

 (27)QX(bb)2
 (27) Q3 X2(X'2X2) -1 XXi (bi - bo)

 - [bi - bo] [Xi -XXl (XX2) -1 X2] [-X(XiX) Xi1 [b1 - bo]

 (27) is a quadratic form in b1 - bo and therefore cannot have rank higher
 than p. But b1 - bo is a linear transformation of the 8's, as can be shown
 from (2) and (16):

 (28) b1-bo = - f-F +{[(X'X1) -1 Xi 0]-[X'X1 + X'X2]-1 [Xi X2] } [e]

 Under the null hypothesis Pl = P2 = fi, Q3 will thus be a quadratic form
 in the 8's with a maximum rank of p. From (28), we also see that Q3 will tend
 to be larger when the null hypothesis is not true.

 It has already been observed that the rank of Q2 is m + n - 2p. Since
 the rank of Qi is smaller than or equal to the rank of Q2 plus the rank of Q3,
 the rank of Q3 must be p. Under the null hypothesis Q2 and Q3 will be

 distributed independently as X2(M - n - 2p)a2 and X2(p)02. While the
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 598 GREGORY C. CHOW

 distribution of Q3 is affected if Ho does not hold, Q2 will have the same
 distribution regardless. We thus can test Ho by the F ratio

 (29) F(p, m + n 2p)- Q31p
 _ jjX1bj - X1boJ2 + IjIX2b2 - X2bo0j2 (m + n -2p)

 1I yi- Xibi 112 + 11 y2-X2b2 J12 p

 (29) is the standard analysis-of-covariance test when mi > p.5
 A few remarks will suffice to indicate the application of the theory of

 linear hypotheses to the case m < p. Let us rewrite (23) as

 y1-Xbo 2 (30) Yl-X = IIy-XibiII2 +? IXibi -XiboII2 + IIY2-X2b21 2
 Y2 -X2b50

 + IIX2b2 X2boII2

 Our models for Ho and Ha are (15) and (14), as before. The sum of squares
 under HO is clearly Qi whether m > p or m <? p. The sum of squares under
 Ha will become yi - X1b1 l2 when m < p-this can be seen either by
 evaluating the sum of squares of the residuals from regression (14) or by
 noting that the residuals from the second sample will simply be zero.

 Regardless of the size m, ly - X1b]1 2 will be distributed as X2(n -p)a2
 and will be independent of the sum of the other three terms on the right side

 of (30). The sum of these three terms equals

 IIXibi-XiboII2 + IIY2-X2boII2

 even if b2 is undefined. When m < p, we can test Ho by the ratio

 (31) F(m, n - p) - I IX1bi-X1boI 12 + I1Y2-X2boII2 (n-P)
 Ily" - b,X 1 12 m

 When m > p, (31) remains valid. However, using (31) instead of (29) in

 this situation would amount to taking a part of Ql, i.e., ||Y2 - X2b22,
 which is not affected by the inequality between f1 and P2, and placing it
 in the numerator of the F ratio. This would reduce the power of the test.

 The theory of linear hypotheses has now been applied to testing the homo-

 geneity of two regressions. To provide a link between the analysis of covarian-
 ce (29) and the prediction interval (8), we will point out that the test (13)
 in Section 3, including its special case (8), is identical with the test (31). The
 proof of this identity requires only the proof that

 (32) d'[I + X2(X1Xl)-1 X2]-1 d = IIXib, - Xbo 112 + I1Y2 - X2boII2.

 5 Additional references on the analysis of covariance include [1], [5], [9], and [10].
 [1] is a special issue devoted to the analysis of covariance mainly for the design of

 experiments.
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 TESTS OF EQUALITY 599

 From (25), we deduce

 (33) b= [I + (XiXXl)-' X2X2]bo (X'X1)-1 XIy2.

 Substitute (33) into d:

 (34) d Y2 -X2b= [I + X2(X'X1)- X2] [Y2- X2bo].
 Given (34), we evaluate the quadratic form

 (35) d'[I + X2(X'X1) -' X']-' d [y2- boX2] [I + X2(X'Xl) -' X2] [y2- X2bo]

 -[Y2 b0X2] [Y2 -X2b] ? [y2 - b'X'X2] (X'Xl)-' [X'y2 - XX2b0].

 Our proof of (32) will be complete by observing the relationship, based on

 (25), that

 (36) XIy2 - X'X2bo=- [XX1b1 - X`Xibo]

 5. TESTS OF EQUALIT.Y BETWEEN SUBSETS OF COEFFICIENTS IN TWO REGRESSIONS

 The results given so far, as summarized- by (29) and (31), will now be

 extended to testing the equality between subsets of coefficients in two

 regressions. As before, we will first examine the case m > /.

 Under the alternative hypothesis, our model is

 Y= X1fl + 81 Zlyl + Wi3i + 81,
 (37)

 Y2 = X242 + 82 Z2y2 + W262 + 82,

 or

 [] = ? Wi 0 Y2 +r:8i
 [2] [? Z2 0 W2 [i 82

 (32

 where the coefficients flu are divided into y, and b(i, the matrix X1 is cor-
 respondingly divided into Z, and W1, and similarly for f2 and X2. Let yi
 and y2 be column vectors of q elements each; and &1 and 62 be column
 vectors of q q elements each. The subsets of coefficients to be tested

 are y, and y2-
 The null hypothesis is y, = y2 = y, implying the model

 (38) [y] [ZiW1 W2] [0 ] + r:ii
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 600 GREGORY C. CHOW

 Under the null hypothesis, the least-squares estimators of the coefficients
 are

 -CO z;z1 + Z2Z2 Z'w1 zW 2] -1 z1 ' 2z
 (39) dio WiZi WiWi 0 Wi l [

 rio] I WI y2] Ld20 - WZ2 0 W'W2J O WLO

 The sum of squares of the residuals under H0, analogous to (18), will be

 [ _ z1 Wi 0 (Z1 + Z2 Z1W1 Z2W2\iI ZI Z2 1 E
 (40) [s'e'] [I -( 0 W2Zi W'Wi )0 K ' W fI [02]

 W2'Z2 0 W'2W2W
 with m + n - 2- + q degrees of freedom.

 Under the alternative hypothesis yl #A y2, the least-squares estimators
 are

 -l Zi'zizl 0 ZWi 0 -i Z, -
 (41) C2 _ Z2Z2 ? Z2'W2 ? Z2
 ( ) di Wi'Zi ? W1iF ? Wi 0 L21

 _d2_ L O W2Z2 0 W2'W2_ _LO W2'_

 The sum of squares of the residuals under Ha, which is identical with (21),

 will have m + n - 2p degrees of freedom.
 As before, the sum of squares under H, can be broken up into the sum

 of squares under Ha plus the sum of squares of the differences between the
 two sets of estimates of y, namely,

 _ll\ Zi Wi 0 C6o\0112 ,// Ci 2 (42) / i )d~io yi\ 0 Wi C
 kY) \Z2 ?to0 W2 KdI 0Z20 W2\dij
 ? Yi2 W 0 (ZY i W2(2 d2

 11Zi 0 W, 0 ) C20 Z1 Wi. o bCO
 + 10~~ + Z1? 2 ? W2/ dly Z 0 W2)dJ

 or

 Q1 Q2 + Q3*

 We will omit the proof that each of the cross-products on the right side of
 (42) is zero, but will indicate following identity which may be used in the
 proof:

 (43) [Z Wi w Lo 0 Wi 1 I
 ( ) 22 ? W2] 0 Z2 ? W2] 0 I O

 LO O Ii
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 TESTS OF EQUALITY 601

 Given that the ranks of Q* and Q2 are respectively m + n -2p + q and
 m + n - 2p, the rank of Q3* must be q once it can be shown that it is at
 most q. To show the maximum rank of Q*, we first define yi. as the residuals
 of the regression of y, on Wl, Zl. as the residuals of Z1 on Wi, and similarly
 for Y2. and Z2.. Then it can be proved that

 (44) [Cl (ZVI.Zl.)-lZloylj
 LC2] (Zt-Z2-)- Z2Yy]

 and

 45) rdl [(WiWi)-lWiyil 1(WWi1)
 Id2] [(W2W2)-1W2y2 J [(TW'W2)-1WWZ2c2

 Rather than digressing to complete the proofs of (44) and (45), we simply

 indicate that essentially they involve partitioning the matrix of the cross-

 products of the explanatory variables in (41) into four blocks and then

 inverting the partitioned matrix. The same method will also prove

 (46) CO = [Vi. Zl. + Z2. Z2-1-1 [Z1. Z2.] [Y2]

 and

 (47) -dl i (Wiwi)-iW{y 1 ] (W'Wi)-AWiZico]
 ( ) Ld20 L(W2W2)-1W2Y21 L(W2'W2)-1W2,f2CO -

 Using (45) and (47), we can rewrite the vector of the differences between

 the estimates of y under Ha and under H,:

 _Cj

 0 W, 0 pC2 1 Wi 0 CO
 (48) [dZ 0 Wi ] [il] - 0 wW2 CO

 0 220 W2 di 0 W2 d20

 I I- wff'wi)-l W 0 -Z(ci co) O W2('2W2)-1W2[ Z2(C2 -CO))

 The developments from now on will correspond to the developments of (25),
 (26), (27), and (28) in Section 4. From (44) and (46), it follows that

 (49) [Z'. Z +z zl 1 ' + ' Z Z' (49 [Z1. 1. 2 22.1 C0 = Z1 yl. 4 Z2. Y2= Z'ZC1 ?l Z1 2 22. C2

 which corresponds to (25). (49) can be used to express C2 - cO as a linear
 tranformation of cl - cO, a transformation similar to the one in (26). Replacing
 C2 - CO in (48) by this transformation of cl - cO, we will observe that Q3 is a
 quadratic form in cl -cO, with maximum rank q. A further step analogous

 to (28) will show that Q* tends to be larger when y, # y2. We thereforehave
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 602 GREGORY C. CHOW

 (50) FF(q, m + n-2p) Q2/(m ? n-2p)

 lZici ? Widi-Zico-Widiol 12 + I IZ2c2 + W2d2-Z2cO-W2d201 12

 Il1y- Z,c1 - WidiII2 + 1IY2- Z2c2- W2d2II2

 x (m + n - 2p)
 q

 The remaining case for examination is (p - q) < m < p. As long as
 m > (p - q), least-squares estimators under Ho can be obtained by (39),
 but not when m < (p - q) because W2W2 will then be singular. The sum
 of squares of the residuals under Ho will still be Qr. The sum of squares of

 the residuals under Ha will be |Jyi - Z,c, - W,di|2 with n p degrees
 of freedom. Corresponding to (31), we have

 (51) F(m -+q, )

 IZic, + Widi- Zico- Wid,o112 + IY2 -Z2co- W2d20o12 (%-p)
 IIy,- Z,ct- Wid,II2 (m-p + q)

 ' The results of this paper, which are really contained in (50) and (51),
 can be summarized briefly. To test the equality between sets of coefficients
 in two linear regressions, we obtain the sum of squares of the residuals
 assuming the equality, and the sum of squares without assuming the
 equality. The ratio of the difference between these two sums to the latter
 sum, adjusted for the corresponding degrees of freedom, will be distributed as
 the F ratio under the null hypothesis. This latter sum of squares will be com-
 puted only from the first sample of n observations when the second sample
 is not large enough for computing a separate regression. We have attempted
 to show how the theory of general linear hypotheses is applied to our prob-
 lem and how the prediction interval and the analysis of covariance are
 related to each other and to the theory of general linear hypotheses. While
 we have dealt with the comparison of coefficients in only two regressions,
 the proofs of (29) and (50) can obviously be generalized to the case of many
 regressions.

 6. EXAMPLES

 To illustrate how some of the tests given above are applied, one numerical
 example for each of (29) and (31) will now be provided. These examples
 originated in a study of the demand for automobiles in the United States
 [2]. We will not here go into the economic justifications of them as they are
 contained in the reference cited. The study utilizes annual observations
 on the following variables:

This content downloaded from 128.97.55.184 on Mon, 28 Nov 2016 21:45:33 UTC
All use subject to http://about.jstor.org/terms



 TESTS OF EQUALITY 603

 Xt, ownership of automobiles measured in "new-car - equivalents" per
 capita at the end of year t. The unit is per cent of a new-car equivalent per

 capita.

 Xt, purchase of new cars during year t, with the same unit of measurement
 as above.

 Pt, relative price index of automobile stock, with 1937 as 100.
 Idt, real disposable income per capita in 1937 dollars.

 Iet, real "expected" income per capita in 1937 dollars used by Milton
 Friedman in his A Theory of the Consumption Fugnction (Princeton: Princeton

 University Press, 1957).

 A statistical demand function for automobile ownership computed

 from observations of 33 years from 1921 to 1953 is

 (XI=e) -.7247 - .048802 Pt + .025487 Iet, R2 = .895,
 (.004201) (.001747) s =.618.

 A statistical demand function for new purchase computed from observations

 of 28 years, from 1921 to 1953 but excluding 1942 to 1946, is

 =1 2 .07791 - .020127 Pt + .0 11699 Idt - .23104 Xt-1, R2.858,
 (.002648) (.001070) (.04719) s = .308.

 Four years after the study had been made, four additional observations

 were available for testing whether these demand functions remained

 stable over time. Since four observations are sufficient for computing a

 separate regression of the form (Xl e), test (29) was used. To determine

 the stability of (4s), test (31) was used. The follow-up study is described

 more thoroughly in [3]. Before presenting the analysis of covariance (29)

 for the demand function (Xl e), we exhibit here the estimated values of the

 dependent variable together with the deviations of the observed values
 from the estimated values.

 1954 1955 1956 1957

 Xt estimated from (XI e) 12.665 12.993 13.328 13.025
 Xt observed minus estimated -.613 .079 .102 .437

 The residuals of the observed values from the estimated values are very

 small, as compared with the standard error of .618. They do not indicate

 any shifts in the pattern of demand for automobile ownership during the

 four years 1954 to 1957.

 We will now proceed with the analysis of covariance (29). The method
 involved can be described very simply. Suppose that n observations are

 used to estimate a regression with P parameters (p - 1 coefficients plus
 one intercept). Suppose also that there are m additional observations, and

 we are interested in deciding whether they are generated by the same

 regression model as the first n observations. To perform the analysis of

 covariance, we need the following sums of squares:
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 A, sum of squares of n + m deviations of the dependent variable from the

 regression estimated by n + m observations, with n + m - p degrees of
 freedom.

 B, sum of squares of n deviations of the dependent variable from the regres-

 sion estimated by the first n observations, with n - p degrees of freedom.
 C, sum of squares of m deviations of the dependent variable from the

 regression estimated by the second m observations, with m - p degrees of
 freedom.

 From (29), the ratio of (A - B - C)/p to (B + C)/(n + m - 2p) will be
 distributed as F(p, n + m - 2p) under the null hypothesis that both groups
 of observations belong to the same regression model. For testing the demand

 function (Xle), the sum of squares A is 10.1155, and B + C is 9.6130. The

 ratio F(3,26) is therefore 0.45. In order to interpret the new observations

 as coming from a different structure at the 5 per cent level of significance,

 F would have to be at least 2.98. Our impression from examining the four

 deviations that there was no change in structure is strongly confirmed.

 The following is a comparison of the estimated and the observed values

 of the dependent variable of demand function (4s).

 1954 1955 1956 1957

 Xl estimated from (4s) 3.452 3.730 3.630 3.270

 Xl observed minus estimated -.044 .608 -.087 .226

 Again, inspection of the residuals reveals that they are not large relative to

 0.308, the standard error of estimate for (4s). The year 1955 is an exception,
 where we find the residual to be twice as large as the standard error. To

 apply test (31), we compute the sum of squares A of the 32 deviations from

 the regression including the four new observations, with 32-4 or 28 degrees

 of freedom. A turns out to be 2.6444 numerically. The sum of squares B

 of the 28 deviations from the regression of the original set of observations

 turns out to be 2.2818, with 24 degrees of freedom. The sum of squares C

 vanishes as long as the number m of new observations does not exceed the

 number of parameters p. According to (31), the F ratio is the ratio of
 (A - B)/4 to B/24, or 0.95 numerically. Therefore, we accept the null
 hypothesis that automobile purchases in the years 1954 to 1957 were govern-
 ed by the same relationship as before.

 Cornell University
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