University of California, Los Angeles Department of Statistics

Statistics 13

Instructor: Nicolas Christou

Homework 2

EXERCISE 1

Consider the following data on cadmium, copper, lead, and zinc at 6 locations define by the coordinates x and y.

	х	У	$\operatorname{cadmium}$	copper	lead	\mathtt{zinc}
1	181072	333611	11.7	85	299	1022
2	181025	333558	8.6	81	277	1141
3	181165	333537	6.5	68	199	640
4	181298	333484	2.6	81	116	257
5	181307	333330	2.8	48	117	269
6	181390	333260	3.0	61	137	281

Compute the following by hand:

- a. The standard deviation of cadmium.
- b. The standard deviation of lead.
- c. The estimates of β_0 and β_1 of the model

 $\texttt{cadmium}_i = \beta_0 + \beta_1 \texttt{lead}_i + \epsilon_i$

- d. The covariance between cadmium and lead.
- e. The correlation coefficient between cadmium and lead.

EXERCISE 2

Consider the simple regression model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i$$

a. Show that the sum of the residuals is always equal to zero:

$$\sum_{i=1}^{n} e_{i} = 0, \text{ where } e_{i} = y_{i} - \hat{y}_{i}$$

b. Show that the estimate of β_1 can be computed also using:

$$\hat{\beta}_1 = r \frac{\mathrm{sd}(\mathrm{y})}{\mathrm{sd}(\mathrm{x})}$$

c. Use the result of part (b) to compute again $\hat{\beta}_1$ of exercise 1.

EXERCISE 3

Access the following data in R (see other side for variable description):

- a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics13/house_data.txt", header=TRUE)</pre>
 - a. Use R to run the regression of PRICE on FLR and RMS. Write the fitted regression equation.
 - b. Use R to predict the house prices for the following data on FLR and RMS:

FLR	RMS
841	4
890	4
1050	Ę
1560	6
2180	8

Data for exercise 3:

PRICE	BDR	FLR	FP	RMS	ST	LOT	TAX	BTH	CON	GAR	CDN	L1	L2
53	2	967	0	5	0	39	652	1.5	1	0	0	1	0
55	2	815	1	5	0	33	1000	1	1	2	1	1	0
56	3	900	0	5	1	35	897	1.5	1	1	0	1	0
58	3	1007	0	6	1	24	964	1.5	0	2	0	1	0
64	3	1100	1	7	0	50	1099	1.5	1	1.5	0	1	0
44	4	897	0	7	0	25	960	2	0	1	0	1	0
49	5	1400	0	8	0	30	678	1	0	1	1	1	0
70	3	2261	0	6	0	29	2700	1	0	2	0	1	0
72	4	1290	0	8	1	33	800	1.5	1	1.5	0	1	0
82	4	2104	0	9	0	40	1038	2.5	1	1	1	1	0
85	8	2240	1	12	1	50	1200	3	0	2	0	1	0
45	2	641	0	5	0	25	860	1	0	0	0	0	1
47	3	862	0	6	0	25	600	1	1	0	0	0	1
49	4	1043	0	7	0	30	676	1.5	0	0	0	0	1
56	4	1325	0	8	0	50	1287	1.5	0	0	0	0	1
60	2	782	0	5	1	25	834	1	0	0	0	0	1
62	3	1126	0	7	1	30	734	2	1	0	1	0	1
64	4	1226	0	8	0	37	551	2	0	2	0	0	1
66	2	929	1	5	0	30	1355	1	1	1	0	0	1
35	4	1137	0	7	0	25	561	1.5	0	0	0	0	0
38	3	743	0	6	0	25	489	1	1	0	0	0	0
43	3	596	0	5	0	50	752	1	0	0	0	0	0
46	2	803	0	5	0	27	774	1	1	0	1	0	0
46	2	696	0	4	0	30	440	2	1	1	0	0	0
50	2	691	0	6	0	30	549	1	0	2	1	0	0
65	3	1023	0	7	1	30	900	2	1	1	0	1	0

The variables above represent:

PRICE	= Selling price of house in thousands of dollars
BDR	= Number of bedrooms
FLR	= Floor space in sq.ft.
FP	= Number of firplaces
RMS	= Number of rooms
ST	= Storm windows (1 if present. 0 if absent)
LOT	= Front footage of lot in feet
TAX	= Annual taxes
BTH	= Number of bathrooms
CON	= Construction (0 if frame, 1 if brick)
GAR	= Garage size (0=no garage, 1=one-car garage, etc.)
CDN	= Condition (1=needs workk, 0 otherwise)
L1	= Location (L1=1 if property is in zone A, L1=0 otherwise)
L2	= Location (L2=1 if property is in zone B, L2=0 otherwise)

EXERCISE 4

Three stocks A, B, C have the following expected (mean) returns and standard deviations:

- μ σ
- A 0.20 0.08
- *B* 0.10 0.04
- C = 0.15 = 0.06

Also, the correlation coefficients are: $\rho_{AB} = 0.5, \rho_{AC} = 0.2$, and $\rho_{BC} = 0.1$.

- a. What is the mean return and risk (variance) on a portfolio of $\frac{3}{4}$ A and $\frac{1}{4}$ B?
- b. What is the mean return and risk (variance) on a portfolio of 20% stock A, 50% stock B, and 30% stock C?
- c. Consider only stocks A and C. Find the composition of the minimum risk portfolio. Using many combinations of stocks A and C construct the portfolio possibilities curve and identify the efficient frontier.