University of California, Los Angeles
Department of Statistics

Statistics 13 Instructor: Nicolas Christou

Homework 2 - Solutions

EXERCISE 1
Let y =cadmium, x =lead. We will need the following table:

y X y'2 x72 X*y
1 11.7 299 136.89 89401 3498.3
2 8.6 277 73.96 76729 2382.2
3 6.5 199 42.25 39601 1293.5
4 2.6 116 6.76 13456 301.6
5 2.8 117 7.84 13689 327.6
6 3.0 137 9.00 18769 411.0

The sum of these columns are:
S Y =235.2, 30 wi=1145, 30 4?2 =276.7, 30  a? = 251645 and 3 0wy = 8214.2.
Using the formulas from the handouts we compute the following:

a. The standard deviation of cadmium: sd(y) = 3.75.

b. The standard deviation of lead: sd(x) = 81.41.

c. The estimates of 5y and 1 of the model

cadmium; = By + Si1lead; + ¢;
By = 0.04517 and Bo = —2.753.

d. The covariance between cadmium and lead: cov(y,x) = 299.37.

e. The correlation coefficient between cadmium and lead: r = 0.98.
EXERCISE 2
Consider the simple regression model:

yi = Bo + Przi + €

a. Show that the sum of the residuals is always equal to zero:

n

Zei = Z(yi — ;) = Zyi - Z(Bo +bizi) =
i=1 =1 i=1

i=1

Zyi —nfo — b ZCM = Zyz —n(j — p17) — B le =
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Zyi —ng+nhz — A sz = 0.
i=1 i=1

b. Show that the estimate of 81 can be computed also using:
5 sd(y)
Pr=r sd(x)
From the handout:
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c. Use the result of part (b) to compute again Bl of exercise 1.

~ sd(y) 375
br=r_g5 = 0985 7 = 0.0451.




EXERCISE 3
Let Y; = Bix; + €;. The xz;’s are non-random. To find the estimate of 51 we minimize S = Z?zl e? or minimize
S = Z:;l(yi — ﬁlxi)Q. So, take the derivative w.r.t. to 1, set it equal to zero and solve:

—:—22 — Bxi)zi =0

Solving for B we get:
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EXERCISE 4
We have the model y; = Bo + fixi + €, where z; is in inches, and therefore the model in centimeters will be
yi = B + Bicx: + &

a. The least squares estimates of 35 and 3 are:

c Zz 1 TilYi — 7(2”: w’)(z:lzl yl) - Ax _ 1A
n 1 — .
Zn 33% _ (lenl z;)?2
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b=

For 3 we have:
PO IO i oA
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b. The value of R? remains the same:
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EXERCISE 5
We can write the centered model as

— R?

Yi =Y + Przi + €
where z; = ©; — Z. The estimates of 51 and o are:

B = iy 2y — (o ) (0, vi)
S 2o (Z:L:lz’)

=11

We note however that Z:;l Zi = Z?Zl(mi — Z) = 0. Therefore the estimate of 31 is:

61 _ Z:l 1211/1 _ Z:l 1( )yl
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We observe that this estimate is the same as the estimate of the uncentered model y; = Bo + S1z: + €.

" (wi—7)

And since z = Z’% = 0 the estimate of 7 is:

Yo =G — PrZ = 4o = §.

EXERCISE 6
You are given s, = 10, ZZ 1 (yi — yl) = 180.
a. The proportion of the variation in y that can be explained by x is the R%. We know that R?> = 1 — LSqST?

SST = (n—1)S2 = (19 — 1)10* = 1800, SSE = "'° (y; — §:)* = 180. Therefore R* = 1 — 8% = 0.90. So,
90% of the variation in y can be explained by z.

b. The standard error of the estimate is se = 4/ % =4/ 1?_02 = 3.25.




EXERCISE 7
You are given the following: z = 76,7 = 880, " (z; — z)? = 6800, Yo (i — ) (yi — §) = 14200, 12y = 0.72,5. =
20.13.

S (@i —2)(yi—y) 14200

: 3 = = = 2.088.
¢ o T (@i —2)? 6300
b. Bo = — 17 = 880 — 2.088(76) = 721.312.
C.
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n A2 n = 2 2
T i (zi—2)° _ 2.088%(6800) S (- 5)? = 57188,

r2 0.722
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d.
» . SSE 5, SST—SSE B i
R =1-cor == "0 = SST - SSE=1*(S5T) =
SSE = SST — r*(SST) = SSE = SST(1 — r*) = 57188(1 — 0.72*) = SSE = 27541.74.
And finally:
2 SSE SSE SSE  27541.74
STkl a2 " 52 = o1z o= n=T
EXERCISE 8

Here are the R commands:

#Read the "asthma.txt" data:
al <- read.table("http://www.stat.ucla.edu/"nchristo/statistics13/asthma.txt", sep=",",
header=TRUE)

#Initialize the vector b and r:
b <- rep(0,1000)
r <- rep(0,1000)

#A for loop that will run 1000 regressions: x is fixed, the y values are permuted.
for(i in 1:1000){

y <- sample(al$resistance)

qqq <- 1lm(y ~ al$height)

b[i]l <- qqq$coef [2]

r[i] <- cor(y, al$height)

}

#Contruct a histogram of using the 1000 values of b:
hist (b)

#Compute beta_hat from the actual data (original data):
ql <- 1lm(al$resistance ~ al$height)

beta_1 <- ql$coef [2]

#Place the actual beta_l on the histrogram to see how plausible it value is under HO:
segments(beta_1,0,beta_1,200, col="green")

#Count how many of the 1000 simulated beta values are larger than the actual beta_1:
sum(b < beta_1)

#You can construct the histogram using the correlations r and find the same results.



#Read the "cystfibr.txt" data:
a2 <- read.table("http://www.stat.ucla.edu/ nchristo/statistics13/cystfibr.txt", sep=",",
header=TRUE)

#Initialize the vector b and r:
b <- rep(0,1000)
r <- rep(0,1000)

#A for loop that will run 1000 regressions: x is fixed, the y values are permuted.
for(i in 1:1000){

y <- sample(a2$resistance)

qqq <- 1lm(y ~ a2$height)

b[i] <- qqq$coef [2]

r[i] <- cor(y, a2$height)

}

#Contruct a histogram of using the 1000 values of b:
hist (b)

#Compute beta_hat from the actual data (original data):
ql <- 1m(a2$resistance ~ a2$height)

beta_1 <- qi$coef[2]

#Place the actual beta_l on the histrogram to see how plausible it value is under HO:
segments(beta_1,0,beta_1,200, col="green")

#Count how many of the 1000 simulated beta values are larger than the actual beta_1:
sum(b < beta_1)

#You can construct the histogram using the correlations r and find the same results.



