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Statistics 13 Instructor: Nicolas Christou

Homework 2 - Solutions

EXERCISE 1
Let y =cadmium, x =lead. We will need the following table:

y x y^2 x^2 x*y

1 11.7 299 136.89 89401 3498.3

2 8.6 277 73.96 76729 2382.2

3 6.5 199 42.25 39601 1293.5

4 2.6 116 6.76 13456 301.6

5 2.8 117 7.84 13689 327.6

6 3.0 137 9.00 18769 411.0

The sum of these columns are:∑6

i=1
yi = 35.2,

∑6

i=1
xi = 1145,

∑6

i=1
y2
i = 276.7,

∑6

i=1
x2
i = 251645 and

∑6

i=1
xiyi = 8214.2.

Using the formulas from the handouts we compute the following:

a. The standard deviation of cadmium: sd(y) = 3.75.

b. The standard deviation of lead: sd(x) = 81.41.

c. The estimates of β0 and β1 of the model

cadmiumi = β0 + β1leadi + εi

β̂1 = 0.04517 and β̂0 = −2.753.

d. The covariance between cadmium and lead: cov(y, x) = 299.37.

e. The correlation coefficient between cadmium and lead: r = 0.98.

EXERCISE 2
Consider the simple regression model:

yi = β0 + β1xi + εi

a. Show that the sum of the residuals is always equal to zero:

n∑
i=1

ei =

n∑
i=1

(yi − ŷi) =

n∑
i=1

yi −
n∑

i=1

(β̂0 + β̂1xi) =

n∑
i=1

yi − nβ̂0 − β̂1

n∑
i=1

xi =

n∑
i=1

yi − n(ȳ − β̂1x̄)− β̂1

n∑
i=1

xi =

n∑
i=1

yi − nȳ + nβ̂1x̄− β̂1

n∑
i=1

xi = 0.

b. Show that the estimate of β1 can be computed also using:

β̂1 = r
sd(y)

sd(x)

From the handout:

β̂1 =

∑n

i=1
(xi − x̄)(yi − ȳ)∑n

i=1
(xi − x̄)2

and cov(x, y) =

∑n

i=1
(xi − x̄)(yi − ȳ)

n− 1
.

β̂1 =

∑n

i=1
(xi−x̄)(yi−ȳ)

n−1∑n

i=1
(xi−x̄)2

n−1

=
cov(y, x)

var(x)
=

cov(y, x)

sd(x)sd(x)

sd(y)

sd(y)
= r

sd(y)

sd(x)
.

c. Use the result of part (b) to compute again β̂1 of exercise 1.

β̂1 = r
sd(y)

sd(x)
= 0.98

3.75

81.41
= 0.0451.



EXERCISE 3
Let Yi = β1xi + εi. The xi’s are non-random. To find the estimate of β1 we minimize S =

∑n

i=1
ε2i or minimize

S =
∑n

i=1
(yi − β1xi)

2. So, take the derivative w.r.t. to β1, set it equal to zero and solve:

∂S

∂β
= −2

n∑
i=1

(yi − βxi)xi = 0

Solving for β̂ we get:

β̂ =

∑n

i=1
xiyi∑n

i=1
x2
i

.

EXERCISE 4
We have the model yi = β0 + β1xi + εi, where xi is in inches, and therefore the model in centimeters will be
yi = β∗

0 + β∗
1cxi + εi.

a. The least squares estimates of β∗
0 and β∗

1 are:

β̂∗
1 =

c

c2

∑n

i=1
xiyi − 1

n
(
∑n

i=1
xi)(

∑n

i=1
yi)∑n

i=1
x2
i −

(
∑n

i=1
xi)2

n

⇒ β̂∗
1 = 1

c
β̂1.

For β̂∗
0 we have:

β̂∗
0 = ȳ − β̂∗

1cx̄ = ȳ − 1

c
β̂1cx̄⇒ β̂∗

0 = β̂0.

b. The value of R2 remains the same:

(R∗)2 = (β̂∗
1 )2 S

2
cx

S2
y

=
1

c2
β̂2

1c
2 S

2
x

S2
y

= β̂2
1
S2
x

S2
y

= R2

EXERCISE 5
We can write the centered model as

yi = γ0 + β1zi + εi

where zi = xi − x̄. The estimates of β1 and γ0 are:

β̂1 =

∑n

i=1
ziyi − 1

n
(
∑n

i=1
zi)(

∑n

i=1
yi)∑n

i=1
z2
i −

(
∑n

i=1
zi)2

n

We note however that
∑n

i=1
zi =

∑n

i=1
(xi − x̄) = 0. Therefore the estimate of β1 is:

β̂1 =

∑n

i=1
ziyi∑n

i=1
z2
i

=

∑n

i=1
(xi − x̄)yi∑n

i=1
(x1 − x̄)2

=∑n

i=1
(xiyi − x̄yi)∑n

i=1
(xi − x̄)2

⇒ β̂1 =

∑n

i=1
xiyi − 1

n
(
∑n

i=1
xi)(

∑n

i=1
yi)∑n

i=1
(xi − x̄)2

.

We observe that this estimate is the same as the estimate of the uncentered model yi = β0 + β1xi + εi.

And since z̄ =

∑n

i=1
(xi−x̄)

n
= 0 the estimate of γ0 is:

γ̂0 = ȳ − β̂1z̄ ⇒ γ̂0 = ȳ.

EXERCISE 6
You are given sy = 10,

∑19

i=1
(yi − ŷi)2 = 180.

a. The proportion of the variation in y that can be explained by x is the R2. We know that R2 = 1 − SSE
SST

.

SST = (n − 1)S2
y = (19 − 1)102 = 1800, SSE =

∑19

i=1
(yi − ŷi)2 = 180. Therefore R2 = 1 − 180

1800
= 0.90. So,

90% of the variation in y can be explained by x.

b. The standard error of the estimate is se =
√

SSE
n−2

=
√

180
19−2

= 3.25.



EXERCISE 7
You are given the following: x̄ = 76, ȳ = 880,

∑n

i=1
(xi − x̄)2 = 6800,

∑n

i=1
(xi − x̄)(yi − ȳ) = 14200, rxy = 0.72, se =

20.13.

a. β̂1 =

∑n

i=1
(xi − x̄)(yi − ȳ)∑n

i=1
(xi − x̄)2

=
14200

6800
= 2.088.

b. β̂0 = ȳ − β̂1x̄ = 880− 2.088(76) = 721.312.

c.

r = β̂1
sx
sy
⇒ s2

y =
β̂2

1s
2
x

r2
⇒

∑n

i=1
(yi − ȳ)2

n− 1
=
β̂2

1

∑n

i=1
(xi − x̄)2

r2(n− 1)
⇒

n∑
i=1

(yi − ȳ)2 =
β̂2

1

∑n

i=1
(xi − x̄)2

r2
=

2.0882(6800)

0.722
⇒

n∑
i=1

(yi − ȳ)2 = 57188.

d.

R2 = 1− SSE

SST
⇒ r2 =

SST − SSE
SST

⇒ SST − SSE = r2(SST ) ⇒

SSE = SST − r2(SST )⇒ SSE = SST (1− r2) = 57188(1− 0.722)⇒ SSE = 27541.74.

And finally:

S2
e =

SSE

n− k − 1
=
SSE

n− 2
⇒ n− 2 =

SSE

S2
e

=
27541.74

20.132
= 67.97⇒ n = 70.

EXERCISE 8
Here are the R commands:

#Read the "asthma.txt" data:

a1 <- read.table("http://www.stat.ucla.edu/~nchristo/statistics13/asthma.txt", sep=",",

header=TRUE)

#Initialize the vector b and r:

b <- rep(0,1000)

r <- rep(0,1000)

#A for loop that will run 1000 regressions: x is fixed, the y values are permuted.

for(i in 1:1000){

y <- sample(a1$resistance)

qqq <- lm(y ~ a1$height)

b[i] <- qqq$coef[2]

r[i] <- cor(y, a1$height)

}

#Contruct a histogram of using the 1000 values of b:

hist(b)

#Compute beta_hat from the actual data (original data):

q1 <- lm(a1$resistance ~ a1$height)

beta_1 <- q1$coef[2]

#Place the actual beta_1 on the histrogram to see how plausible it value is under H0:

segments(beta_1,0,beta_1,200, col="green")

#Count how many of the 1000 simulated beta values are larger than the actual beta_1:

sum(b < beta_1)

#You can construct the histogram using the correlations r and find the same results.



#Read the "cystfibr.txt" data:

a2 <- read.table("http://www.stat.ucla.edu/~nchristo/statistics13/cystfibr.txt", sep=",",

header=TRUE)

#Initialize the vector b and r:

b <- rep(0,1000)

r <- rep(0,1000)

#A for loop that will run 1000 regressions: x is fixed, the y values are permuted.

for(i in 1:1000){

y <- sample(a2$resistance)

qqq <- lm(y ~ a2$height)

b[i] <- qqq$coef[2]

r[i] <- cor(y, a2$height)

}

#Contruct a histogram of using the 1000 values of b:

hist(b)

#Compute beta_hat from the actual data (original data):

q1 <- lm(a2$resistance ~ a2$height)

beta_1 <- q1$coef[2]

#Place the actual beta_1 on the histrogram to see how plausible it value is under H0:

segments(beta_1,0,beta_1,200, col="green")

#Count how many of the 1000 simulated beta values are larger than the actual beta_1:

sum(b < beta_1)

#You can construct the histogram using the correlations r and find the same results.


