Statistics 13

Instructor: Nicolas Christou

Homework 6 - Solutions

EXERCISE 1

a. We follow the 4 steps:

1.

$$H_0: \ \mu = 0.30$$

 $H_a: \ \mu > 0.30$

2. We compute the test statistic z:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{0.33 - 0.30}{\frac{0.15}{\sqrt{121}}} \Rightarrow z = 2.2$$

- 3. We find the rejection region. Here we use significance level $\alpha = 0.05$, therefore the rejection region will be when z > 1.645.
- 4. Conclusion: Since z = 2.2 > 1.645 we reject H_0 . Therefore based on the evidence the average nicotine content is more than 0.30 milligram.

b. Reject H_0

EXERCISE 2

a. We follow the 4 steps:

1.

$$H_0: \mu = 130$$

 $H_a: \mu < 130$

2. We compute the test statistic z:

$$z = \frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} = \frac{128.6 - 130}{\frac{3}{\sqrt{40}}} \Rightarrow z = -2.95$$

- 3. We find the rejection region. Here we use significance level $\alpha = 0.05$, therefore the rejection region will be when z < -1.645.
- 4. Conclusion: Since z = -2.95 < -1.645 we reject H_0 . Therefore based on the evidence the mean output voltage is less than 130 volts.
- b. Yes, it is possible that the mean output voltage is still 130 volts. We may have committed a type I error.
- c. The Type II error β will increase.

EXERCISE 3

a. We follow the 4 steps:

1.

$$H_0: p = 0.20$$

 $H_a: p \neq 0.20$

2. We compute the test statistic z:

$$z = \frac{p_s - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} = \frac{0.08 - 0.20}{\sqrt{\frac{0.20(1 - 0.20)}{100}}} \Rightarrow z = -3.0$$

- 3. We find the rejection region. Here we use significance level $\alpha = 0.05$, and because this is a two-sided test we find that $z_{0.025} = 1.96$ and the rejection region is when $z > z_{0.025}$ or $z < -z_{0.025}$.
- 4. Conclusion: Since z = -3.0 < -1.96 we reject H_0 . Therefore we reject the claim that 20% of the public prefer the product.
- b. The p-value is the probability of observing the test statistic that we computed or a larger value. We computed z = -3.0. Therefore the p-value= $2P(z < -3.0) = 2(0.0013) \Rightarrow$ p-value= 0.0026. We multiply by 2 because this is a two-sided test.

EXERCISE 4

We are give n = 41, $\bar{x} = 6.15$ fluid ounces, and s = 0.30 fluid ounces.

a. We follow the 4 steps:

1.

$$H_0: \ \mu = 6 \ H_a: \ \mu > 6$$

2. We compute the test statistic t:

$$t = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{6.15 - 6}{\frac{0.30}{\sqrt{41}}} \Rightarrow t = 3.20$$

- 3. We find the rejection region. Here we use significance level $\alpha = 0.01$, and n 1 = 41 1 = 40 degrees of freedom. From the t table we find that the rejection region is when the test statistic t is larger than $t_{0.01;40} = 2.423$.
- 4. Conclusion: Since t = 3.20 > 2.423 we reject H_0 . Therefore this is an evidence of overfilling.
- b. Type I error: Falsely conclude that there is evidence of overfilling. Type II error: Falsely conclude that there is not overfilling.

EXERCISE 5

- a. A type I error in terms of this problem will be if we decide that the supplier gives less mean weight of potato chips when actually he gives the correct amount.
- b. A type II error in terms of this problem will be if we decide that the supplier gives the correct mean amount of potato chips when actually he gives less.
- c. The customers view as more serious a type II error because no action will be taken by the supplier. The supplier views as more serious a type I error because unecessary action will be taken.

EXERCISE 6 The *p*-value is:

p-value: p-value: p-value: p-value: p-value: p-value is less than α we reject the H_0 hypothesis. If $\mu = 130$ is true, then there is only 0.0016 probability of observing this sample mean or a more extreme value. This is a very unlikely event, therefore we reject H_0 .

EXERCISE 7

First we want to find the values of \bar{x} for which we reject H_0 . From part (a) the rejection region is z > 1.645, Or

$$\begin{split} & \frac{\bar{x}-\mu}{\frac{\sigma}{\sqrt{n}}} > 1.645 \Rightarrow \frac{\bar{x}-0.30}{\frac{0.15}{\sqrt{121}}} > 1.645 \Rightarrow \\ & \bar{x}-0.30 > 1.645 \frac{0.15}{\sqrt{121}} \Rightarrow \bar{x} > 0.3224. \end{split}$$

Therefore we reject H_0 if $\bar{x} > 0.3224$. Now, we want to compute the probability of commiting a type II error. This can be written as: P(do not reject H_0 when in fact H_0 is not true) = P($\bar{x} < 0.3224$ when the true mean is $\mu = 0.31$) =

$$P(z < \frac{0.3224 - 0.31}{\frac{0.15}{\sqrt{121}}}) = P(z < 0.91) = 0.5 + 0.3186$$

The type II error is $\beta = 0.8186$ and the power of the test is $1 - \beta = 1 - 0.8186 = 0.1814$. This is a low-power test. The probability of detecting the difference between the hypothesized and true mean is only 18.14%.

EXERCISE 8

Part(c). First we want to find the values of \bar{x} for which we reject H_0 . From part (a) the rejection region is z < -1.645, Or

$$\frac{\bar{x} - \mu}{\frac{\sigma}{\sqrt{n}}} < -1.645 \Rightarrow \frac{\bar{x} - 130}{\frac{3}{\sqrt{40}}} < -1.645 \Rightarrow$$
$$\bar{x} - 130 < -1.645 \frac{3}{\sqrt{40}} \Rightarrow \bar{x} < 129.22$$

Therefore we reject H_0 if $\bar{x} < 129.22$. Now, we want to compute the probability of commiting a type II error. This can be written as: P(do not reject H_0 when in fact H_0 is not true) = P($\bar{x} > 129.22$ when the true mean is $\mu = 128.6$) =

$$P(z > \frac{129.22 - 128.6}{\frac{3}{\sqrt{40}}} = P(z > 1.31) = 0.5 - 0.4049 = 0.0951$$

The type II error is $\beta = 0.0951$ and the power of the test is $1 - \beta = 1 - 0.0951 = 0.9049$. This is a high-power test. The probability of detecting the difference between the hypothesized and true mean is 90.49%.

EXERCISE 9

Here we are testing: 1

 $H_0: p = \frac{1}{2}$ $H_a: p \neq \frac{1}{2}$

a.
$$\alpha = P(X = 0 \text{ or } X = 10) = {\binom{10}{0}} \frac{1}{2} \frac{0}{2} \frac{1}{2} \frac{10}{2} + {\binom{10}{10}} \frac{1}{2} \frac{10}{2} \frac{1}{2} \frac{0}{2} = 0.0020.$$
 Therefore the significance level is $\alpha = 0.0020.$

b.
$$1 - \beta = P(X = 0 \text{ or } X = 10|p = 0.10) = {10 \choose 0} 0.1^0 0.9^{10} + {10 \choose 10} 0.1^{10} 0.9^0 = 0.3487$$
. Therefore the power of the test is $1 - \beta = 0.3487$.

EXERCISE 10 We are given $X \sim bin(100, p)$ and we are testing $H_0: p = 0.50$ $H_a: p \neq 0.50$

- a. We reject H_0 if |X 50| > 10 which is the same as X < 40 or X > 60. For n = 100, p = 0.50 we have $\mu = np = 100(0.5) = 50$ and $\sigma = \sqrt{np(1-p)} = \sqrt{100(0.50)(1-0.50)} = 5$. The probability of falsely rejecting H_0 is $\alpha = P(X < 40) + P(X > 60) = P(Z < \frac{39.5-50}{5}) + P(Z > \frac{60.5-50}{5}) = P(z < -2.1) + P(z > 2.1) = 2(0.0179) = 0.0358$. Therefore $\alpha = 0.0358$. Note: We used the continuity correction for the normal approximation to binomial.
- b. Find $1 \beta = P(X < 40 \text{ or } X > 60|p)$ for different values of p, say p = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9. Then place the power on the vertical axis and p on the horizontal axis to graph the power as a function of p.

EXERCISE 11

- a. False.
- b. False.
- c. False.
- d. False.
- e. False.
- f. False.
- g. False.

EXERCISE 12 We are testing:

 $H_0: p = 0.80$ $H_a: p < 0.80$

a.
$$\alpha = P(\text{falsely rejecting } H_0) = P(X \le 12) = \sum_{x=0}^{12} {\binom{20}{x}} 0.80^x 0.20^{20-x} = 0.0321.$$

b.
$$\beta = P(\text{falsely accepting } H_0) = P(X > 12) = \sum_{x=13} {\binom{20}{x}} 0.60^x 0.40^{20-x} = 0.4159.$$

c.
$$\beta = P(\text{falsely accepting } H_0) = P(X > 12) = \sum_{x=13}^{20} {20 \choose x} 0.40^x 0.60^{20-x} = 0.0210.$$

EXERCISE 13

We are testing: H_0 : p = 0.50 H_a : p < 0.50

a.
$$\alpha = P(\text{falsely rejecting } H_0) = P(X \le 2) = \sum_{x=0}^2 {\binom{15}{x}} 0.50^x 0.50^{15-x} = 0.0037.$$

b.
$$\beta = P(\text{falsely accepting } H_0) = P(X > 2) = \sum_{x=3}^{15} {\binom{15}{x}} 0.30^x 0.70^{15-x} = 0.8732.$$