University of California, Los Angeles
 Department of Statistics

Statistics 13

Instructor: Nicolas Christou

Confidence intervals - some numerical examples

Example 1:

Suppose that the length of iron rods from a certain factory follows the normal distribution with known standard deviation $\sigma=0.2 \mathrm{~m}$ but unknown mean μ. Construct a 95% confidence interval for the population mean μ if a random sample of $n=16$ of these iron rods has sample mean $\bar{x}=6 \mathrm{~m}$.
Answer:

$$
\mu \in \bar{x} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \Rightarrow 6 \pm 1.96 \frac{0.2}{\sqrt{16}} \text { or } 6 \pm 0.098
$$

Therefore we are 95% confident that $5.9 \leq \mu \leq 6.1$.

Example 2:

For the example above, suppose that we want the entire width of the confidence interval to be equal to 0.05 m . Find the sample size n needed.
Answer:

$$
n=\left(\frac{z_{\frac{\alpha}{2}} \sigma}{E}\right)^{2}=\left(\frac{1.96 \times 0.2}{0.025}\right)^{2}=245.9 \approx 246
$$

Example 3:

A sample of size $n=50$ is taken from the production of lightbulbs at a certain factory. The sample mean of the lifetime of these 50 lightbulbs is found to be $\bar{x}=1570$ hours. Assume that the population standard deviation is $\sigma=120$ hours.
a. Construct a 95% confidence interval for μ.

Answer:

$$
1570 \pm 1.96 \frac{120}{\sqrt{50}} \Rightarrow 1570 \pm 33.3 \Rightarrow 1536.7 \leq \mu \leq 1603.3
$$

b. Construct a 99% confidence interval for μ.

Answer:

$$
1570 \pm 2.575 \frac{120}{\sqrt{50}} \Rightarrow 1570 \pm 43.7 \Rightarrow 1526.3 \leq \mu \leq 1613.7
$$

c. What sample size is needed so that the length of the interval is 30 hours with 95% confidence?
Answer:

$$
n=\left(\frac{z_{2} \sigma}{E}\right)^{2}=\left(\frac{1.96 \times 120}{15}\right)^{2}=245.9 \approx 246
$$

Example 4:

The daily production of a chemical product last week in tons was: 785, 805, 790, 793, and 802.
a. Construct a 95% confidence interval for the population mean μ.

Answer: These data have $\bar{x}=795$ and $s d(x)=8.34$. Using the t distribution with 4 degrees of freedom we get:

$$
\bar{x} \pm t_{\frac{\alpha}{2} ; n-1} \frac{s}{\sqrt{n}} \Rightarrow 795 \pm 2.776 \frac{8.34}{\sqrt{5}} \Rightarrow 795 \pm 10.35 \Rightarrow 784.65 \leq \mu \leq 805.35
$$

b. What assumptions are necessary?

Answer: The sample was selected from normal distribution.

Example 5:

A precision instrument is guaranteed to read accurately to within 2 units. A sample of 4 instrument readings on the same object yielded the measurements 353, 351, 351, and 355. Find a 90% confidence interval for the population variance. What assumptions are necessary? Does the guarantee seem reasonable?
Answer: These data have $\operatorname{var}(x)=3.67$. Using the χ^{2} distribution we get:

$$
\left[\frac{(n-1) s^{2}}{\chi_{1-\frac{\alpha}{2} ; n-1}^{2}}, \quad \frac{(n-1) s^{2}}{\chi_{\frac{\alpha}{2} ; n-1}^{2}}\right] \Rightarrow\left[\frac{(4-1) \times 3.67}{7.81}, \frac{(4-1) \times 3.67}{0.352}\right] \Rightarrow(1.41,31.3) .
$$

Example 6:

At a survey poll before the elections candidate A receives the support of 650 voters in a sample of 1200 voters.
a. Construct a 95% confidence interval for the population proportion p that supports candidate A.
Answer: These data have $\hat{p}=\frac{650}{1200}=0.54$.

$$
\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \Rightarrow 0.54 \pm 1.96 \sqrt{\frac{0.54(1-0.54)}{1200}} \Rightarrow 0.54 \pm 0.028 \Rightarrow 0.512 \leq p \leq 0.568
$$

b. Find the sample size needed so that the margin of error will be ± 0.01 with confidence level 95%.
Answer:

$$
n=\frac{z_{\frac{\alpha}{2}}^{2} \hat{p}(1-\hat{p})}{E^{2}}=\frac{1.96^{2}(0.54)(1-0.54)}{0.01^{2}}=9542.5 \approx 9543 .
$$

Example 7:

The $U C L A$ housing office wants to estimate the mean monthly rent for studios around the campus. A random sample of size $n=31$ studios is taken from the area around $U C L A$. The sample mean is found to be $\bar{x}=\$ 1300$ with sample standard deviation $s=\$ 150$. Assume that these data are selected from a normal distribution.
a. Construct a 90% confidence interval for the mean monthly rent of studios in the area around UCLA.
Answer: Using the t distribution with 30 degrees of freedom

$$
\bar{x} \pm t_{\frac{\alpha}{2} ; n-1} \frac{s}{\sqrt{n}} \Rightarrow 1300 \pm 1.697 \frac{150}{\sqrt{31}} \Rightarrow 1300 \pm 45.7 \Rightarrow 1254.3 \leq \mu \leq 1345.7
$$

b. Construct a 99% confidence interval for the mean monthly rent of studios in the area around UCLA.
Answer:

$$
\bar{x} \pm t_{\frac{\alpha}{2} ; n-1} \frac{s}{\sqrt{n}} \Rightarrow 1300 \pm 2.750 \frac{150}{\sqrt{31}} \Rightarrow 1300 \pm 74.1 \Rightarrow 1225.9 \leq \mu \leq 1374.1
$$

c. What sample size is needed so that the length of the interval is $\$ 60$ with 95% confidence? Assume $\sigma=\$ 150$.
Answer:

$$
n=\left(\frac{z_{\frac{\alpha}{2}} \sigma}{E}\right)^{2}=\left(\frac{1.96 \times 150}{30}\right)^{2}=96.04 \approx 97
$$

Example 8:

A chemist has prepared a product designed to kill 60% of a particular type of insect. What sample size should be used if he desires to be 95% confident that he is within 0.02 of the true fraction of insects killed?
Answer:

$$
n=\frac{z_{\frac{\alpha}{2}}^{2} \hat{p}(1-\hat{p})}{E^{2}}=\frac{1.96^{2}(0.60)(1-0.60)}{0.02^{2}}=2304.96 \approx 2305 .
$$

Example 9

Let $10.5,11.3,12.8,9.6,5.3$ the times in seconds needed for downloading 5 files on your computer from a course website. If we assume that this sample we selected from a normal distribution, construct a 98% confidence interval for the population men μ. Also, construct a 98% confidence interval for the population variance σ^{2}.
Answer: We need \bar{x}, s^{2} :
$\mathrm{x}<-\mathrm{c}(10.5,11.3,12.8,9.6,5.3)$
$>\operatorname{mean}(\mathrm{x})$; $\operatorname{var}(\mathrm{x}) ; \operatorname{sd}(\mathrm{x})$
[1] 9.9
[1] 7.995
[1] 2.827543
98\% Confidence interval for the population mean:

$$
\bar{x} \pm t_{\frac{\alpha}{2} ; n-1} \frac{s}{\sqrt{n}} \Rightarrow 9.9 \pm 3.747 \frac{2.83}{\sqrt{5}} \Rightarrow 9.9 \pm 4.74 \Rightarrow 5.16 \leq \mu \leq 14.64
$$

98% Confidence interval for the population variance:

$$
\left[\frac{(n-1) s^{2}}{\chi_{1-\frac{\alpha}{2} ; n-1}^{2}}, \quad \frac{(n-1) s^{2}}{\chi_{\frac{\alpha}{2} ; n-1}^{2}}\right] \Rightarrow\left[\frac{(5-1) \times 7.995}{13.28}, \frac{(5-1) \times 7.995}{0.297}\right] \Rightarrow(2.41,107.7)
$$

Example 10

The sample mean lifetime of $n_{1}=100$ light bulbs was found to be equal $\bar{x}_{1}=1500$ hours. After new material was used in the production, another sample of size $n_{2}=100$ light bulbs was selected and gave $\bar{x}_{2}=1600$ hours. If assume that the standard deviation is $\sigma=150$ hours in both case, construct a 95% confidence interval for the difference in the population means, $\mu_{1}-\mu_{2}$.
Answer:

$$
\begin{aligned}
& \bar{x}_{1}-\bar{x}_{2}-z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \leq \mu_{1}-\mu_{2} \leq \bar{x}_{1}-\bar{x}_{2}+z_{\frac{\alpha}{2}} \sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \\
& 1500-1600 \pm 1.96 \sqrt{\frac{150^{2}}{100}+\frac{150^{2}}{100}} \Rightarrow-100 \pm 41.6 \Rightarrow-141.6 \leq \mu_{1}-\mu_{2} \leq-58.4 .
\end{aligned}
$$

