

Random variables

- Discrete random variables.
- Continuous random variables.
- **Discrete random variables.** Denote a discrete random variable with X :
 It is a variable that takes values with some probability.
 Examples:
 - Roll a die. Let X be the number observed.
 - Draw 2 cards with replacement. Let X be the number of aces among the 2 cards.
 - Roll 2 dice. Let X be the sum of the 2 numbers observed.
 - Toss a coin 5 times. Let X be the number of tails among the 5 tosses.
 - Randomly select a US household. Let X be the number of people live in this household.

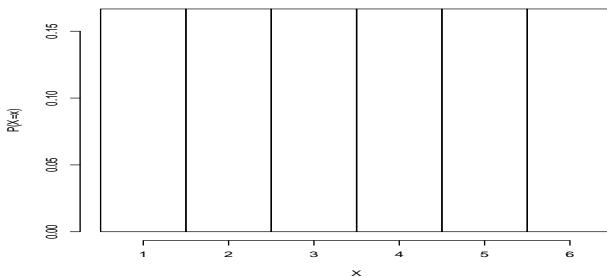
- **Probability distribution of a discrete random variable X**

It is the list of all possible values of X with the corresponding probabilities. It can be represented by a table, a graph, or a function.

Examples:

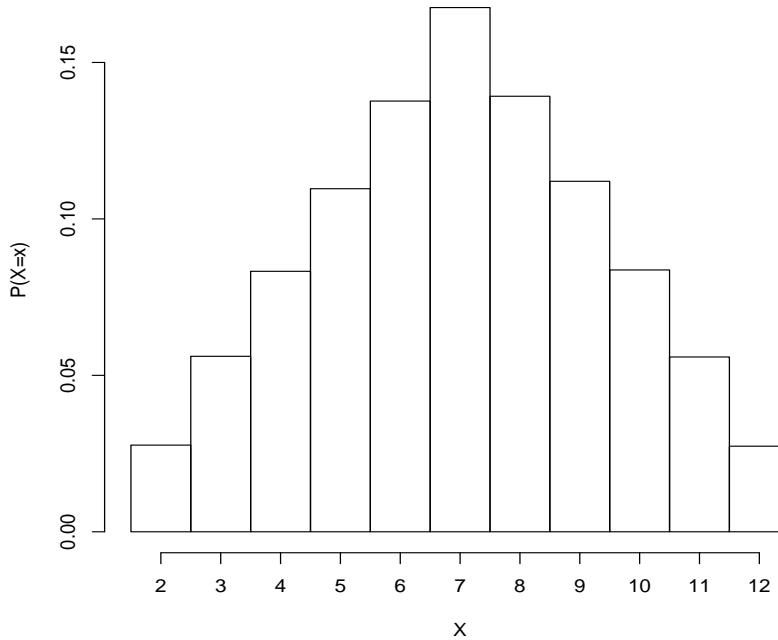
- Roll a die. Let X be the number observed. The probability distribution of X is:

X	$P(X = x)$
1	$\frac{1}{6}$
2	$\frac{1}{6}$
3	$\frac{1}{6}$
4	$\frac{1}{6}$
5	$\frac{1}{6}$
6	$\frac{1}{6}$



b. Roll two dice. Let X be the sum of the two numbers observed. The probability distribution of X is:

X	$P(X = x)$
2	$\frac{1}{36}$
3	$\frac{2}{36}$
4	$\frac{3}{36}$
5	$\frac{4}{36}$
6	$\frac{5}{36}$
7	$\frac{6}{36}$
8	$\frac{5}{36}$
9	$\frac{4}{36}$
10	$\frac{3}{36}$
11	$\frac{2}{36}$
12	$\frac{1}{36}$



We can also represent this distribution with a function: $P(X = x) = \frac{6-|x-7|}{36}$, for $x = 2, 3, \dots, 12$. This is called probability mass function and returns the probability for each possible value of the random variable X .

- **Expected value (or mean) of a discrete random variable**

It is denoted with $E(X)$ or μ and it is computed as follows:

Definition:

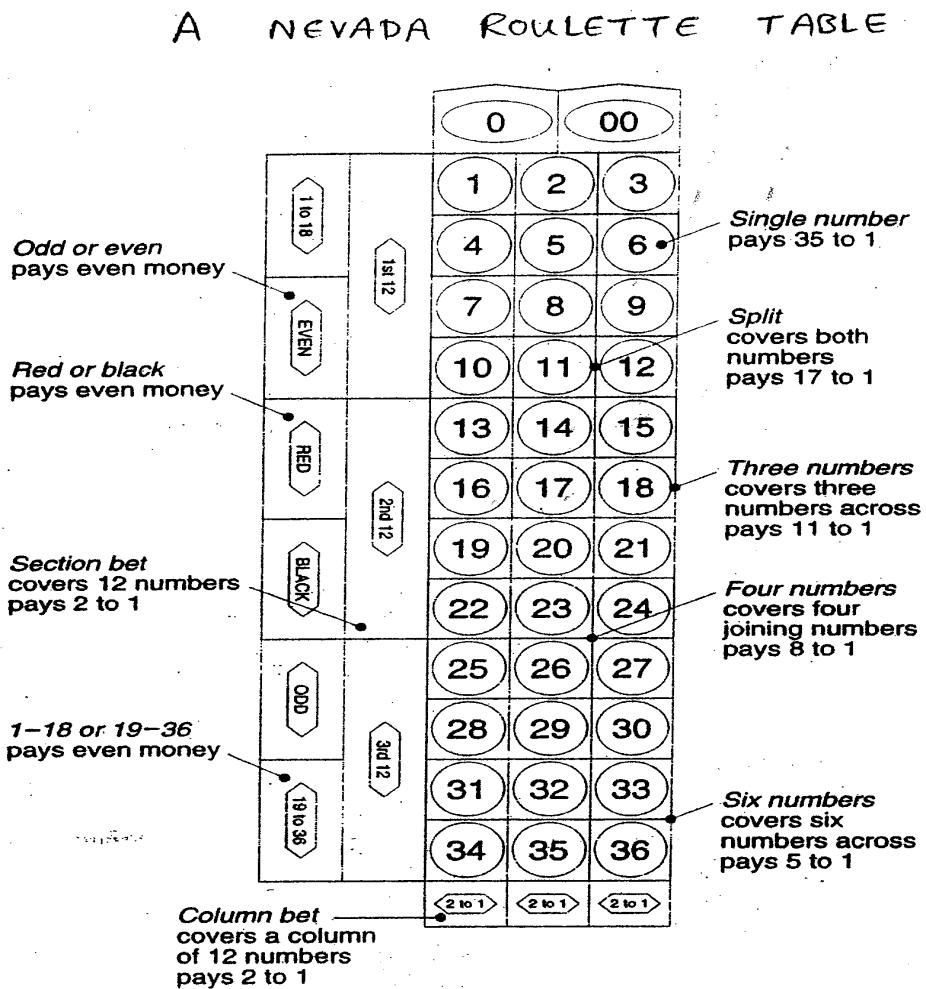
$$\mu = E(X) = \sum_x xP(X = x)$$

It is a weighted average. The weights are the probabilities.

Example:

Roll a die. Let X be the number observed. Find the expected value of X . The $E(X)$ must be somewhere between 1, 6: $E(X) = 1\frac{1}{6} + 2\frac{1}{6} + 3\frac{1}{6} + 4\frac{1}{6} + 5\frac{1}{6} + 6\frac{1}{6} = 3.5$. What does this number mean?

Example: Casino roulette. Below you see the standard Nevada roulette table:



Roulette is a pleasant, relaxed, and highly comfortable way to lose your money.
—JIMMY THE GREEK

FROM: "STATISTICS"
DAVID FREEMAN
ROBERT PISANI
ROGER PURVES

A player will bet 1\$ on four joining numbers. This bet pays 8 : 1. Let X be the player's payoff. Find the player's expected payoff.

- **Expected value of a sum of random variables**

Let X and Y be 2 random variables. The expected value of the sum of these 2 random variables is:

$$E(X + Y) = E(X) + E(Y)$$

Example:

Roll 2 dice. Let X be the number observed on the first die and Y be the number observed on the second die. Let W be the sum of the 2 dice. Find the expected value of W . There are 2 ways to solve this problem:

- $E(W) = E(X + Y) = E(X) + E(Y) = 3.5 + 3.5 = 7$
- Or using the distribution of the sum of the two dice (see page 2):

$$E(W) = \sum_w wP(W = w) = 2\frac{1}{36} + 3\frac{2}{36} + \dots + 12\frac{1}{36} = 7.$$

The expected value of the sum can be extended to more than two random variables:

$$E(X + Y + Z + \dots) = E(X) + E(Y) + E(Z) + \dots$$

- **Variance and standard deviation of a discrete random variable**

Consider the following 2 probability distributions:

X	$P(X)$	Y	$P(Y)$
0	$\frac{1}{2}$	5	$\frac{1}{2}$
1	$\frac{1}{2}$	-4	$\frac{1}{2}$

What do you observe?

Definition:

$$Var(X) = \sigma^2 = E(X - \mu)^2 = \sum_x^n (x - \mu)^2 P(X = x) = \sum_x x^2 P(X = x) - \mu^2$$

The standard deviation of a discrete random variable is the square root of the variance:

$$SD(X) = \sqrt{\sigma^2} = \sqrt{\sum_x^n (x - \mu)^2 P(X = x)} = \sqrt{\sum_x x^2 P(X = x) - \mu^2}$$

It follows that:

$$\sigma^2 = EX^2 - \mu^2 \quad \text{or} \quad EX^2 = \sigma^2 + \mu^2$$

Example:

Roll a die. Let X be the number observed. Find the variance of X .

$$Var(X) = 1^2 \frac{1}{6} + 2^2 \frac{1}{6} + 3^2 \frac{1}{6} + 4^2 \frac{1}{6} + 5^2 \frac{1}{6} + 6^2 \frac{1}{6} - 3.5^2 = 2.917.$$

The standard deviation is:

$$SD(X) = \sqrt{2.917} = 1.708.$$

- **Some properties of expectation and variance**

Let X, Y random variables and a, b constants.

- $E(aX) = aE(X)$
- $E(aX + b) = aE(X) + b$
- $Var(X + a) = Var(X)$
- $Var(aX) = a^2 Var(X)$
- $Var(aX + b) = a^2 Var(X)$.
- If X, Y are independent then $Var(X + Y) = Var(X) + Var(Y)$

Example:

An insurance policy costs \$100, and will pay policyholders \$10000 if they suffer a major injury (resulting in hospitalization) or \$3000 if they suffer a minor injury (resulting in lost time from work). The company estimates that each year 1 in every 2000 policyholders may have a major injury, and 1 in 500 a minor injury.

- a. Construct the probability distribution for the profit on a policy.
- b. What is the company's expected profit on this policy?
- c. Do you think the standard deviation is large or small. Why?
- d. Compute the standard deviation.
- e. Suppose that the company writes (a) 36, (b) 10000 of these policies per year. What are the mean and standard deviation of the annual profit for these 2 cases?
- f. Comment!

Solution:

- a. Let X the profit of the company on one of these insurance policies. The probability distribution of X is:

X	$P(x)$
-9900	0.0005
-2900	0.002
100	0.9975

- b. Expected value of X :

$$E(X) = -9900(0.0005) - 2900(0.002) + 100(0.9975) = 89.$$

- c. The standard deviation will be large.

- d. Variance of X :

$$var(X) = (-9900)^2(0.0005) + (-2900)^2(0.002) + (100)^2(0.9975) - 89^2 = 67879. \text{ Therefore the standard deviation is: } sd(X) = \sqrt{67879} = 260.54.$$

- e. Here we need to find the expected value and variance of sum of random variables. In part (i) we have a sum of 36 random variables and in part (ii) a sum of 10000 variables.

Part(i):

$$E(Y_1 + \dots + Y_{36}) = 36(89) = 3204.$$

$var(Y_1 + \dots + Y_{36}) = 36(67879)$. The standard deviation is:

$$sd(Y_1 + \dots + Y_{36}) = \sqrt{36(67879)} = 1563.2.$$

Part(ii):

$$E(Y_1 + \dots + Y_{10000}) = 10000(89) = 890000.$$

$var(Y_1 + \dots + Y_{10000}) = 10000(67879)$. The standard deviation is:

$$sd(Y_1 + \dots + Y_{10000}) = \sqrt{10000(67879)} = 26053.6.$$