Constructing a boxplot and computing descriptive statistics in Stata and more...
Retrieve the file "textbookex1_38" as follows:
. use http://www.stat.ucla.edu/~nchristo/textbookex1_38
In this file there are four variables.. The first (year1) is the year in which the Boston marathon was completed by men. The second (male_tim) is the completion time rounded to the nearest minute for the years 1959-97. The third (year2) is the year in which women were allowed to compete in the Boston Marathon. The fourth (female_tim) is the completion time also rounded to the nearest minute. You can see the data by typing . edit or . list Let's construct a box plot for the finishing time of men and women. First the box plot of the finishing time for men:

```
graph box male_tim, t1title(Finishing marathon time for male runners)
```

Finishing marathon time for male runners

Then the boxplot for the finishing time for women:

. graph box female_t, t1title(Finishing marathon time for female runners)

Finishing marathon time for female runners

We can also do a side-by-side boxplot to compare the 2 variables.
. graph box male_tim female_t, t1title(Side-by-side boxplot)

Now let's use Stata to compute descriptive statistics for the completion time of men and women. Here is the command:

```
. summarize male_tim female_t
```

And here is what Stata gives you:

Variable	Obs	Mean	Std. Dev.	Min	Max
male_tim	39	133.641	5.106689	127	144
female_t	26	153.6538	13.07499	142	190

If you want more detailed output you should type:

```
. summarize male_tim female_t, detail
```

And you will receive this:

	male_tim			
	Percentiles	Smallest		
1%	127	127		
5%	128	128		
10%	128	128	Obs	39
25%	129	128	Sum of Wgt.	39
50%	132		Mean	133.641
			Sargest	Std. Dev.
75%	137	142		5.106689
90%	142	143	Variance	26.07827
95%	144	144	Skewness	.6219865
99%	144	144	Kurtosis	2.113501

female_t				
	Percentiles	Smallest		
1\%	142	142		
5\%	143	143		
10\%	144	144	Obs	26
25\%	145	144	Sum of Wgt.	26
50\%	147		Mean	153.6538
		Largest	Std. Dev.	13.07499
75\%	162	167		
90\%	168	168	Variance	170.9554
95\%	186	186	Skewness	1.482637
99\%	190	190	Kurtosis	4.361222

- Question:

Find the median, the first and third quartiles, and compute the interquartile range of the completion time for men and women. Now go back to the boxplots and locate these numbers. Which dataset has larger variation? Try to find a reason for that.

Think about this...

Another data set gives the boxplot below.
What happened here? Generate data that give you approximately the following boxplot.

A different data set has the following boxplot.
Why? Generate data that give you approximately the following boxplot.

