

University of California, Los Angeles
Department of Statistics

Statistics 13

Instructor: Nicolas Christou

Test for the difference between two population means

Example 1:

An investigator wishes to test whether there is a difference of 10 mg/dl in cholesterol level between a control group and a diet intervention group (low-fat). The sample means of the cholesterol level for $n = 100$ subjects in each group are $\bar{x}_1 = 230 \text{ mg/dl}$ and $\bar{x}_2 = 215 \text{ mg/dl}$. Assume that for both groups the standard deviation is $\sigma = 16 \text{ mg/dl}$. Test the hypothesis that the difference is more than 10 mg/dl .

Example 2:

A study was conducted to investigate the effect of an oral antiplaque rinse on plaque buildup on teeth. For this study, 14 subjects were divided into 2 groups of 7 subjects each. Both groups were assigned to use oral rinses for a 2-week period. Group 1 used rinse that contained an antiplaque agent, while group 2 received a similar rinse except that it contained no antiplaque agent. A plaque index that measures the plaque buildup was recorded after 2 weeks. The sample mean and sample standard deviation for the 2 groups are shown below:

	Group 1	Group 2
Sample size	7	7
Sample mean	0.78	1.26
Sample standard deviation	0.32	0.32

- a. State the null and alternative hypotheses that should be used to test the effectiveness of the antiplaque rinse.
- b. Assume that $\sigma_1^2 = \sigma_2^2 = \sigma^2$ but unknown, and that the 2 populations follow the normal distribution. Compute the appropriate test statistic.
- c. What is your conclusion using $\alpha = 0.05$

Test for the difference between two population means Sample size determination

Suppose that we want to test the following hypothesis:

$$H_0: \mu_1 - \mu_2 = 0$$

$$H_a: \mu_1 - \mu_2 > 0$$

To perform this test a sample of n observations from each population is to be selected. Assume that the populations are normally distributed with known variances σ_1^2 and σ_2^2 respectively.

a. If we require $1 - \beta$ power of the test and we are willing to accept Type I error α , find an expression for the sample size needed to detect a shift in the difference between the two population means from $\mu_1 - \mu_2 = 0$ to $\mu_1 - \mu_2 = \delta$ ($\delta > 0$).

b. Find the sample size needed to detect with probability 90% a 10 mg/dl difference in cholesterol level between a low-fat diet group and a control group if we can accept a Type I error $\alpha = 0.05$. Assume $\sigma = 28 \text{ mg/dl}$ for both groups.