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Department of Statistics

Statistics 100B Instructor: Nicolas Christou

Simple regression analysis - summary

Introduction:
Regression analysis is a statistical method aiming at discovering how one variable is related to
another variable. It is useful in predicting one variable from another variable. Consider the following
“scatterplot” of the percentage of body fat against thigh circumference (cm). This data set is
described in detail in the handout on R.
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And another one: This is the concentration of lead against the concentration of zinc (see handout
on R for more details on this data set).
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What do you observe?

Is there an equation that can model the picture above?

• Regression model equation:

yi = β0 + β1xi + εi

where

- y response variable (random)

- x predictor variable (non-random)

- β0 intercept (non-random)

- β1 slope (non-random)

- ε random error term, ε ∼ N(0, σ)

• Using the method of least squares we estimate β0 and β1:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)yi∑n
i=1(xi − x̄)2

=

∑n
i=1 xiyi − 1

n (
∑n
i=1 xi) (

∑n
i=1 yi)∑n

i=1 x
2
i −

(
∑n

i=1
xi)

2

n

β̂0 =

∑n
i=1 yi
n

− β̂1
∑n
i=1 xi
n

⇒ β̂0 = ȳ − β̂1x̄

• The fitted line is:

ŷi = β̂0 + β̂1xi

• Distribution of β̂1 and β̂0:

β̂1 ∼ N
(
β1,

σ√∑n
i=1(xi − x̄)2

)
, β̂0 ∼ N

(
β0, σ

√
1

n
+

x̄2∑n
i=1(xi − x̄)2

)

• The standard deviation σ is unknown and it is estimated with the “standard error of the
estimate” or “residual standard error” which measures the variability around the fitted line.
It is computed as follows:

se =

√∑n
i=1(yi − ŷi)2
n− 2

=

√∑n
i=1 e

2
i

n− 2
=

√∑n
i=1 e

2
i

n− 2

where

ei = yi − ŷi = yi − β̂0 − β̂1xi is called the residual (the difference between the observed
yi value and the fitted value ŷi.
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• Coefficient of determination:
The total variation in y (total sum of squares SST =

∑n
i=1(yi− ȳ)2) is equal to the regression

sum of squares (SSR =
∑n
i=1(ŷi− ȳ)2) plus the error sum of squares (SSE =

∑n
i=1(yi− ŷi)2):

SST = SSR+ SSE

The percentage of the variation in y that can be explained by x is called coefficient of
determination (R2):

R2 =
SSR

SST
= 1− SSE

SST
Always 0 ≤ R2 ≤ 1

• Useful:

SST =
n∑
i=1

(yi − ȳ)2 ⇒ SST = (n− 1)s2y where s2y is the variance of y.

• Coefficient of correlation (r):

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2

Or easier for calculations:

r =

∑n
i=1 xiyi − 1

n (
∑n
i=1 xi) (

∑n
i=1 yi)√∑n

i=1 x
2
i −

(
∑n

i=1
xi)

2

n

√∑n
i=1 y

2
i −

(
∑n

i=1
yi)

2

n

Always −1 ≤ r ≤ 1 and R2 = r2.

• Another formula for r:

r = β̂1
sx
sy

where sx, sy are the standard deviations of x and y.

• Covariance between y and x:

cov(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)

n− 1

Therefore

r =
cov(x, y)

sxsy
⇒ cov(x,y) = rsxsy and β̂1 = r

sy
sx
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• Standard error of β̂1 and β̂0:

sβ̂1 =
se√∑n

i=1(xi − x̄)2
=

se√∑n
i=1 x

2
i −

(
∑n

i=1
xi)

2

n

and

sβ̂0 = se

√
1

n
+

x̄2∑n
i=1(xi − x̄)2

= se

√√√√ 1

n
+

x̄2∑n
i=1 x

2
i −

(
∑n

i=1
xi)

2

n

• Testing for linear relationship between y and x:

H0 : β1 = 0

Ha : β1 6= 0

Test statistic:

t =
β̂1 − β1
sβ̂1

Reject H0 (i.e. there is linear relationship) if t > tα
2
;n−2 or t < −tα

2
;n−2

• Useful things to know:

n∑
i=1

(xi − x̄)2 =
n∑
i=1

x2i −
(
∑n
i=1 xi)

2

n
and

n∑
i=1

(yi − ȳ)2 =
n∑
i=1

y2i −
(
∑n
i=1 yi)

2

n
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Simple regression analysis - A simple example

The data below give the mileage per gallon (Y ) obtained by a test automobile when using gasoline
of varying octane (x):

y x xy y2 x2

13.0 89 1157.0 169.00 7921
13.5 93 1255.5 182.25 8649
13.0 87 1131.0 169.00 7569
13.2 90 1188.0 174.24 8100
13.3 89 1183.7 176.89 7921
13.8 95 1311.0 190.44 9025
14.3 100 1430.0 204.49 10000
14.0 98 1372.0 196.00 9604∑8

i=1 yi = 108.1
∑8
i=1 xi = 741

∑8
i=1 xiyi = 10028.2

∑8
i=1 y

2
i = 1462.31

∑8
i=1 x

2
i = 68789

a. Find the least squares estimates of β̂0 and β̂1.

β̂1 =

∑n
i=1 xiyi − 1

n (
∑n
i=1 xi) (

∑n
i=1 yi)∑n

i=1 x
2
i −

(
∑n

i=1
xi)

2

n

=
10028.2− 1

8(741)(108.1)

68789− 7412

8

= 0.100325.

β̂0 = ȳ − β̂1x̄ =
108.1

8
− 0.100325

741

8
= 4.2199.

Therefore the fitted line is: ŷi = 4.2199 + 0.100325xi.

b. Compute the fitted values and residuals.

Using the fitted line ŷi = 4.2199 + 0.100325xi we can find the fitted values and residuals. Foe
example, the first fitted value is: ŷ1 = 4.2199+0.100325(89) = 13.1488, and the first residual
is e1 = y1− ŷ1 = 13.0− 13.1488 = −0.14888, etc. The table below shows all the fitted values
and residuals.

ŷi ei e2i
13.14883 -0.14882 0.02215
13.55013 -0.05013 0.00251
12.94818 0.05183 0.00269
13.24915 -0.04915 0.00242
13.14883 0.15118 0.02285
13.75078 0.04922 0.00242
14.25240 0.04760 0.00227
14.05175 -0.05175 0.00268∑n

i=1 = 0
∑n
i=1 e

2
i = 0.05998

c. Find the estimate of σ2.

s2e =

∑n
i=1 e

2
i

n− 2
=

0.05998

8− 2
= 0.009997.

Therefore, se =
√

0.009997 = 0.09999.
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d. Compute the standard error of β̂1.

sβ̂1 =
se√∑n

i=1 x
2
i −

(
∑n

i=1
xi)

2

n

=
0.09999√

68789− 7412

8

= 0.00806.

e. Estimate the miles per gallon for an octane gasoline level of 94.

ŷ = 4.2199 + 0.100325(94) = 13.65.

f. Compute the coefficient of determination, R2.

R2 = 1− SSE

SST
= 1−

∑n
i=1 e

2
i

(n− 1)s2y
= 1− 0.05998

7(0.2298)
= 0.9627.

Therefore, 96.27% of the variation in Y can be explained by x.

The same example can be done with few simple commands in R:

#Enter the data:

> x <- c(89,93,87,90,89,95,100,98)

> y <- c(13,13.5,13,13.2,13.3,13.8,14.3,14)

#Run the regression of y on x:

> ex <- lm(y ~x)

#Display the results:

> summary(ex)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-0.1488221 -0.0505280 -0.0007717 0.0498781 0.1511779

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.21990 0.74743 5.646 0.00132 **

x 0.10032 0.00806 12.447 1.64e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.09999 on 6 degrees of freedom

Multiple R-squared: 0.9627, Adjusted R-squared: 0.9565

F-statistic: 154.9 on 1 and 6 DF, p-value: 1.643e-05
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