University of California, Los Angeles Department of Statistics

Statistics 13

Instructor: Nicolas Christou

Regression - practice questions

EXERCISE 1

Data have been collected for 19 observations of two variables, y and x, in order to run a regression of y on x. You are given that $s_y = 10$, $\sum_{i=1}^{19} (y_i - \hat{y}_i)^2 = 180$.

- a. Compute the proportion of the variation in y that can be explained by x. [Ans. 0.90]
- b. Compute the standard error of the estimate (s_e) . [Ans. 3.25]

EXERCISE 2

Data on y and x were collected to run a regression of y on x. The intercept is included. You are given the following: $\bar{x} = 76, \bar{y} = 880, \sum_{i=1}^{n} (x_i - \bar{x})^2 = 6800, \sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y}) = 14200, r_{xy} = 0.72, s_e = 20.13.$

- a. What is the value of $\hat{\beta}_1$? [Ans. 2.088]
- b. What is the value of $\hat{\beta}_0$? [Ans. 721.312]
- c. What is the value of $\sum_{i=1}^{n} (y_i \bar{y})^2$? [Ans. 57188]
- d. What is the sample size n? [Ans. 70]

EXERCISE 3

Consider the following data:

Combio	.Or (,11,
y	x	
y_{11}	1	_
y_{21}	1	
y_{31}	1	
÷	÷	
÷	÷	
y_{n11}	1	
y_{12}	0	
y_{22}	0	
y_{32}	0	
÷	÷	
÷	÷	
y_{n22}	0	

These data concern the regression of y on x, but x here indicates group membership. If x = 1 then the corresponding y value belongs to group 1, and if x = 0 the corresponding y value belongs to group 2. There are n_1 observations in group 1 and n_2 observations in group 2, a total of $n = n_1 + n_2$ observations. The formulas that we discussed in class on simple regression apply here as well. But there is an interesting result about $\hat{\beta}_1$ and $\hat{\beta}_0$. It is easy to see that $\bar{x} = \frac{n_1}{n_1+n_2}$, $\sum_{i=1}^n x_i^2 = n_1$, and $(\sum_{i=1}^n x_i)^2 = n_1^2$. Answer the following questions:

- a. Show that $\sum_{i=1}^{n} (x_i \bar{x})^2 = \frac{n_1 n_2}{n_1 + n_2}$.
- b. Show that $\hat{\beta}_1 = \bar{y}_1 \bar{y}_2$, and $\hat{\beta}_0 = \bar{y}_2$, where \bar{y}_1 is the sample mean of the y values in group 1 and \bar{y}_2 is the sample mean of the y values in group 2.
- c. For a particular data set it is given that $n_1 = 15$, $n_2 = 10$, $s_y^2 = 0.8$, $\bar{y}_1 = -0.46$, and $\bar{y}_2 = 0.28$. Compute R^2 .

EXERCISE 4

Answer the following questions:

- a. Consider the simple regression of y on x. Suppose we transform the x values using $x_i = \frac{x_i \bar{x}}{s_x}$ and the y values using $y_i = \frac{y_i - \bar{y}}{s_y}$. Is it true that the estimated slope is $\hat{\beta}_1 = r$ (correlation coefficient)? Please explain your answer mathematically (use the formulas to show if this is true).
- b. Refer to question (a). Find $\hat{\beta}_0$?
- c. Let $\hat{\beta}_1$ and $\hat{\beta}_0$ be the estimated slope and intercept of the simple regression of y on x. If we multiply the y variable by 5 and the x variable by 4 and we regress 5y on 4x give the new estimates of the slope and intercept in terms of $\hat{\beta}_1$ and $\hat{\beta}_0$. Show all your work.
- d. Refer to question (c). Will R^2 of the regression of 5y on 5x be the same with the R^2 of the regression of y on x? Please explain your answer mathematically.
- e. Suppose in a simple regression of y on x it happens that $\bar{x} = 0$. Find $\hat{\beta}_1$ and $\hat{\beta}_0$. For the same data set, find the new estimates of $\hat{\beta}_1$ and $\hat{\beta}_0$ in terms of the old ones if we multiply the x variable by 4.

EXERCISE 5

Answer the following questions:

a. You are given the following information on two variables (ppm of Cadmium and Cobalt at 359 spatial locations):

```
summary(a)
       Cd
                         Co
        :0.1350
                        : 1.552
 Min.
                  Min.
                  1st Qu.: 6.660
 1st Qu.:0.6525
 Median :1.1000
                  Median : 9.840
 Mean
        :1.2882
                  Mean
                        : 9.439
 3rd Qu.:1.6800
                  3rd Qu.:12.100
        :5.1290
                          :20.600
 Max.
                  Max.
var(a$Cd)
0.7380493
var(a$Co)
12.73241
#First 3 observations of the data set:
head(a)
           Co
     Cd
1 1.570 8.28
2 2.045 10.80
3 1.203 12.00
            .
```

Consider the regression of Cd on Co. Compute the leverage value of the first data point. Is it a high leverage point? Explain.

b. Data on 6 pairs of x and y gave the following information: $\sum_{i=1}^{6} x_i = 9.545, \sum_{i=1}^{6} y_i = 61.668, \sum_{i=1}^{6} x_i^2 = 15.78468, \sum_{i=1}^{6} y_i^2 = 719.9573, \sum_{i=1}^{6} x_i y_i = 96.43722.$ It was discovered that the last pair of x, y values (1.565, 3.508) was not part of the data set and it was deleted. Find $\hat{\beta}_1$ and $\hat{\beta}_0$ after the last pair was deleted form the data set.

c. Refer to question (b). Find R^2 using the data set after the last pair was deleted form the data set.