
University of California, Los Angeles
Department of Statistics

Statistics 13 Instructor: Nicolas Christou

Simple Regression Analysis

Introduction:
Regression analysis is a statistical method aiming at discovering how one variable is related to
another variable. It is useful in predicting one variable from another variable. Consider the following
“scatterplot” of the percentage of body fat against thigh circumference (cm). This data set is
described in detail in the handout on R.
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And another one: This is the concentration of lead against the concentration of zinc (see handout
on R for more details on this data set).
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What do you observe?

Is there an equation that can model the picture above?

• Regression model equation:

yi = β0 + β1xi + εi

where

- y dependent variable (random)

- x independent variable (non-random)

- β0 intercept (non-random)

- β1 slope (non-random)

- ε random error term, ε ∼ N(0, σ)

• Using the method of least squares we estimate β0 and β1:

β̂1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2

or easier for calculations

β̂1 =

∑n
i=1 xiyi − 1

n (
∑n

i=1 xi) (
∑n

i=1 yi)∑n
i=1 x

2
i −

(
∑n

i=1
xi)

2

n

β̂0 =

∑n
i=1 yi
n

− β̂1
∑n

i=1 xi
n

⇒ β̂0 = ȳ − β̂1x̄

• The fitted line is:

ŷi = β̂0 + β̂1xi

• The difference between the observed and the fitted yi is the residual. It is computed as

ei = yi − ŷi = yi − β̂0 − β̂1xi

• Covariance between y and x:

cov(x, y) =

∑n
i=1(xi − x̄)(yi − ȳ)

n− 1
=

1

n− 1

[
n∑

i=1

xiyi −
1

n

(
n∑

i=1

xi

)(
n∑

i=1

yi

)]

• Coefficient of correlation (r):

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
√∑n

i=1(yi − ȳ)2
=

cov(x, y)

sd(x)sd(y)
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Or easier for calculations:

r =

∑n
i=1 xiyi − 1

n (
∑n

i=1 xi) (
∑n

i=1 yi)√∑n
i=1 x

2
i −

(
∑n

i=1
xi)

2

n

√∑n
i=1 y

2
i −

(
∑n

i=1
yi)

2

n

Always −1 ≤ r ≤ 1.

• Useful things to know:

n∑
i=1

(xi − x̄)2 =
n∑

i=1

x2i −
(
∑n

i=1 xi)
2

n
and

n∑
i=1

(yi − ȳ)2 =
n∑

i=1

y2i −
(
∑n

i=1 yi)
2

n

Simple regression analysis - example

The data below give the mileage per gallon (y) obtained by a test automobile when using gasoline
of varying octane (x):

y x xy y2 x2

13.0 89 1157.0 169.00 7921
13.5 93 1255.5 182.25 8649
13.0 87 1131.0 169.00 7569
13.2 90 1188.0 174.24 8100
13.3 89 1183.7 176.89 7921
13.8 95 1311.0 190.44 9025
14.3 100 1430.0 204.49 10000
14.0 98 1372.0 196.00 9604∑8

i=1 yi = 108.1
∑8

i=1 xi = 741
∑8

i=1 xiyi = 10028.2
∑8

i=1 y
2
i = 1462.31

∑8
i=1 x

2
i = 68789

a. Find the least squares estimates of β̂0 and β̂1.

β̂1 =

∑n
i=1 xiyi − 1

n (
∑n

i=1 xi) (
∑n

i=1 yi)∑n
i=1 x

2
i −

(
∑n

i=1
xi)

2

n

=
10028.2− 1

8(741)(108.1)

68789− 7412

8

= 0.100325.

β̂0 = ȳ − β̂1x̄ =
108.1

8
− 0.100325

741

8
= 4.2199.

Therefore the fitted line is: ŷi = 4.2199 + 0.100325xi.

b. Compute the fitted values and residuals.

Using the fitted line ŷi = 4.2199 + 0.100325xi we can find the fitted values and residuals. For
example, the first fitted value is: ŷ1 = 4.2199+0.100325(89) = 13.1488, and the first residual
is e1 = y1− ŷ1 = 13.0− 13.1488 = −0.14888, etc. The table below shows all the fitted values
and residuals.
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ŷi ei e2i
13.14883 -0.14882 0.02215
13.55013 -0.05013 0.00251
12.94818 0.05183 0.00269
13.24915 -0.04915 0.00242
13.14883 0.15118 0.02285
13.75078 0.04922 0.00242
14.25240 0.04760 0.00227
14.05175 -0.05175 0.00268∑n

i=1 ei = 0
∑n

i=1 e
2
i = 0.05998

c. Compute the covariance between y and x.

cov(y, x) =
1

8− 1

[
10028.2− 1

8
(741)(108.1)

]
= 2.21.

d. verify that sd(x) = 4.689 and sd(y) = 0.479 and then calculate the correlation coefficient.

r =
2.21

(0.479)(4.689)
= 0.984.

The same example can be done with few simple commands in R:

#Enter the data:

> x <- c(89,93,87,90,89,95,100,98)

> y <- c(13,13.5,13,13.2,13.3,13.8,14.3,14)

#Run the regression of y on x:

> ex <- lm(y ~x)

#Display the results:

> summary(ex)

Call:

lm(formula = y ~ x)

Residuals:

Min 1Q Median 3Q Max

-0.1488221 -0.0505280 -0.0007717 0.0498781 0.1511779

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.21990 0.74743 5.646 0.00132 **

x 0.10032 0.00806 12.447 1.64e-05 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.09999 on 6 degrees of freedom

Multiple R-squared: 0.9627, Adjusted R-squared: 0.9565

F-statistic: 154.9 on 1 and 6 DF, p-value: 1.643e-05
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#Compute the covariance, standard deviations, and correlation coefficient:

> cov(y,x)

> sd(y)

> sd(x)

> cor(y,x)

Plot y on x and add the regression fitted line on the plot:

> ex <- lm(y ~ x)

> plot(x, y)

> abline(ex)

Here is the plot:
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The object ex contains the following:

names(ex)

[1] "coefficients" "residuals" "effects" "rank"

[5] "fitted.values" "assign" "qr" "df.residual"

[9] "xlevels" "call" "terms"

We can list the fitted values or the residuals using

ex$fitted.values

ex$residuals

Predict a new value of y using the function predict:

pred_new <- predict(ex, se.fit=TRUE, data.frame(x=80))

pred_new$fit

1

13.85110

The value above was computed by:

ŷ = 4.2199 + 0.100325(96) = 13.8511.
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Simple regression in R - examples

Example 1:
We will use the following data:

data1 <- read.table("http://www.stat.ucla.edu/~nchristo/statistics13/body_fat.txt", header=TRUE)

This file contains data on percentage of body fat determined by underwater weighing and various body circumference measurements for 251 men.
Here is the variable description:

Variable Description
x1 Density determined from underwater weighing
x2 Percent body fat from Siri’s (1956) equation
x3 Age (years)
x4 Weight (lbs)
x5 Height (inches)
x6 Neck circumference (cm)
x7 Chest circumference (cm)
x8 Abdomen 2 circumference (cm)
x9 Hip circumference (cm)
x10 Thigh circumference (cm)
x11 Knee circumference (cm)
x12 Ankle circumference (cm)
x13 Biceps (extended) circumference (cm)
x14 Forearm circumference (cm)
x15 Wrist circumference (cm)

We want to run the regression of x2 (percentage body fat) on x10 (thigh circumference). Here is the regression output:

ex1 <- lm(data1$x2 ~data1$x10)

summary(ex1)

Call:

lm(formula = data1$x2~ data1$x10)

Residuals:

Min 1Q Median 3Q Max

-18.1601 -4.7707 -0.1076 4.5219 25.5994

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -34.26252 4.99529 -6.859 5.46e-11 ***

data$x10 0.89861 0.08373 10.732 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 6.947 on 249 degrees of freedom

Multiple R-squared: 0.3163, Adjusted R-squared: 0.3135

F-statistic: 115.2 on 1 and 249 DF, p-value: < 2.2e-16
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ŷ == −− 34.26 ++ 0.8986x
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Example 2:
Access the data:

data2 <- read.table("http://www.stat.ucla.edu/~nchristo/statistics13/soil_complete.txt", header=TRUE)

This data set consists of 6 variables. The first two columns are the x and y coordinates, and the
last four columns are the concentration of cadmium, copper, lead and zinc in ppm at 155 locations.
We will run the regression of lead against zinc. Our goal is to build a regression model to predict
the lead concentration from the zinc concentration. Here is the regression output.

ex2 <- lm(data2$lead ~data2$zinc)

summary(ex2)

Call:

lm(formula = data2$lead ~ data2$zinc)

Residuals:

Min 1Q Median 3Q Max

-79.853 -12.945 -1.646 15.339 104.200

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 17.367688 4.344268 3.998 9.92e-05 ***

data2$zinc 0.289523 0.007296 39.681 < 2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 33.24 on 153 degrees of freedom

Multiple R-squared: 0.9114, Adjusted R-squared: 0.9109

F-statistic: 1575 on 1 and 153 DF, p-value: < 2.2e-16
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