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 [Read before the Royal Statistical Society on Wednesday, March 16th, 1988,
 at a meeting organized by the Birmingham Group, Professor J. B. Copas in the Chair]

 SUMMARY

 A survey of some developments in bootstrap methodology is given. Topics include confidence

 limits, significance tests, empirical likelihoods, conditioning, double bootstrapping, and
 numerical techniques. Special attention is given to regression problems. There are brief
 remarks about more complex problems, including variance component problems, time series
 and nonparametric regression.

 Keywords: BALANCED SAMPLES; SADDLEPOINT METHODS; PIVOTS; CONFIDENCE LIMITS;
 SIGNIFICANCE TESTS; CONDITIONAL INFERENCE; MONTE CARLO METHODS;
 JACKKNIFE; LIKELIHOOD; PERMUTATION TEST; REGRESSION; VARIANCE
 COMPONENTS; TIME SERIES; SAMPLE SURVEYS; NONPARAMETRIC METHODS

 1. INTRODUCTION

 The essence of bootstrap methods is the simulation of relevant properties of a statistical
 procedure with minimal model assumptions. The word 'simulation' here is used in
 the widest possible sense, from simple substitution of an estimated distribution in a
 formula to complex Monte Carlo simulation of representative samples and their
 analysis. In any given context bootstrap methods may be similar variously to
 simulation methods, permutation methods, jackknife methods or other familiar
 'resampling' methods. One major focus of research has been the search for reliable,
 automatic, empirical methods for calculating confidence limits. Because most boot-
 strap methods involve numerical approximation, potentially powerful techniques of
 theoretical and Monte Carlo approximation have been and continue to be studied.
 As to potential applications, considerable effort has been devoted to classical problems
 involving means, correlations and regression. But increasingly attention is directed
 to more complex problems such as those associated with variance components, time
 series, sample surveys and nonparametric curve fitting.

 The aim of the present paper is to review and illustrate many of the developments
 in bootstrap methodology, so as to highlight key ideas and potential usefulness. The
 choice of material inevitably reflects personal interests, however, so that the paper is
 in no way a comprehensive review. The first sections deal with the relatively simple
 context of homogeneous samples; Sections 2-5 respectively discuss the basic bootstrap
 method, numerical techniques, confidence limit methods and significance test methods.
 Regression problems are considered in Section 6, and the idea of a conditional
 bootstrap introduced there is further discussed in Section 7. Section 8 looks at some
 recent suggestions for empirical likelihoods. Some more complex applications are
 outlined in Section 9. Finally, Section 10 contains some general discussion.

 t Address for correspondence: Department of Mathematics, The University of Texas at Austin, Austin, TX 78712,
 USA.
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 2. BASIC BOOTSTRAP METHOD

 To begin with a very simple example, consider the sample of n = 10 measurements

 xl, ..., x10 in the first row of Table 1, whose average and standard deviation are
 x = 17.87 and s = 7.19. Suppose that we wish to make statistical statements about the
 accuracy of the sample average x as an estimate of s, the mean of X in the population
 from which the sample was drawn. For the sake of definiteness, suppose that we wish
 to know (a) the variance of X, (b) Pr{c < X- - d} for specified c and d, and (c)
 95 % confidence limits for ! on either side of x.

 One classical approach would be to describe random variation in sampled X values
 by a distribution function F(x I 0) = Pr{X < x}, with 0 an unknown parameter (vector
 or scalar) which includes M. Possible answers to problems (a)-{c) are found by
 theoretical calculation based on F with an estimate 0 in place of 0. For example, if
 F is the cdf of the N(y, a2) distribution, so that 0= (a, a2), then the variance of X is
 a2/n, which we usually calculate with 2= (n - (xi - i5)2 in place of a2. In
 bootstrap terminology, this is a parametric bootstrap calculation.

 The nonparametric bootstrap, more usually called simply bootstrap, approach is to
 not assume anything about the form of F, only that it exists. Then in place of F(x I
 one might use the empirical cdf

 F(x) =n- hv(x-xi),

 TABLE 1

 A random sample and small bootstrap analyses of its meant

 Bootstrap Frequencies of datum values for the following data
 sample

 9.6 10.4 13.0 15.0 16.6 17.2 17.3 21.8 24.0 33.8

 Simple bootstrap
 1 1 0 0 1 3 1 1 0 2 1 19.07
 2 1 0 1 1 1 1 0 3 2 0 18.48
 3 0 0 2 1 2 0 2 0 3 0 18.08
 4 1 1 1 2 0 1 1 1 0 2 18.69
 5 1 0 1 1 3 1 1 1 1 0 16.77
 6 1 1 2 0 0 1 1 2 1 1 18.19
 7 0 1 3 1 0 1 3 0 1 0 15.75
 8 2 1 0 0 2 1 0 0 2 2 19.56
 9 1 1 1 2 0 0 1 1 1 2 19.37
 10 0 1 2 0 2 1 0 3 1 0 17.62

 Sample average of x*s= 18.16, sample variance of 5*s 1.41

 Randomized
 block bootstrap
 1 0 0 1 1 3 1 0 0 2 2 21.06
 2 1 3 1 0 1 0 0 1 2 1 17.40
 3 2 0 0 0 1 1 0 2 3 1 20.24
 4 1 0 1 0 0 3 3 1 0 1 18.17
 5 1 2 1 0 2 0 2 2 0 0 15.48
 6 0 2 2 0 1 0 1 2 1 1 18.21
 7 1 0 0 3 1 3 0 0 1 1 18.06
 8 2 1 1 2 0 0 2 0 1 1 16.50
 9 2 1 1 1 0 0 2 1 0 2 18.16
 10 0 1 2 3 1 2 0 1 0 0 15.42

 Sample average of x*s = 17.87, sample variance of x*s 3.333

 fAverage x = 17.87.
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 where hv(u) = 0 (u < 0), l(u > 0); possibly one would consider a smoothed version of F
 (Efron, 1982, ch. 5; Silverman and Young, 1987). For problem (a), a2 in the formula
 var(X) = U2/n would now be calculated with F in place of F as &2 = f x2dF(x) -

 (f xdF(x))2 = n- 1(xi -_ )2, perhaps modified to its unbiased form s2. There is nothing
 novel about this, of course, but there is about using P to do the probability calculations
 for problems (b) and (c).

 Consider problem (b) in detail, and rewrite the required probability in the more
 suggestive form

 P = Pr{c ? mean(data) - mean(F) < d}. (1)

 If this is calculated with P substituted for F everywhere, the result is the estimate

 P = Pr{c < mean(data*) - mean(F) < d}, (2)

 where data* is a random sample of size n drawn from P. Because theoretical evaluation
 of P appears impossible, one might well adopt the strategy of numerical simulation:
 draw repeated samples data*(1), ..., data*(B) from F, and calculate

 psim= number of times c < mean(data*(i)) - mean(F) ? d (3)

 Sim ~~~B
 Table 1 illustrates this for B = 10. Each bootstrap sample data*(i) is recorded in the
 form of frequencies of original data values. For c =-1 and d = + 1 we get PSim = 0.50,
 a not very accurate approximation to P = 0.37 (see Section 3) resulting from the
 ridiculously small value of B: it would be customary to have B well in excess of 100.

 Note that in the simulation, drawing a random sample from P means simply
 sampling n values from data randomly with replacement. But is this a good numerical
 strategy? It would not be if we required only var(X), because the simpler technique
 known as the jackknife (Miller, 1974; Efron, 1982) uses n systematic samples from
 data and gives the correct answer-here meaning &2/n. Can P itself be calculated
 without numerical simulation? Such questions are addressed in the next section.

 A very different question concerns the accuracy of P as an approximation to, or
 estimate of, P. If P is very inaccurate, then choosing data-dependent values c = - and
 d = d to make P = 0.95, for example, would make the natural 0.95 bootstrap confidence
 limit formula

 mean(data)- <- mean(F) < mean(data) - (4)

 unreliable. We know from experience that this is likely to happen for small samples
 of, say, normal or gamma data: the reliable confidence limit methods are based on
 probabilities for (x - ,)/s and x/,u respectively, not - ,u. Is there some way of finding
 out that P is inaccurate? Is there a general, reliable way to calculate confidence limits
 for ,u? To these questions we return in Section 4.

 The example of the average illustrates a general type of problem to which
 considerable theoretical effort has been directed. Given a statistical estimate T = t(F)

 of population characteristic 0 = t(F), we wish to calculate Q = E{R,(F, P) I F}; here
 E( I F) denotes the expectation with respect to F. The quantity RJ(F, F) might be
 simple, e.g. (X -, _)2, or complicated, e.g. the indicator of whether or not (X - u)/S < a.
 The nonparametric bootstrap approximation of Q is Q = E{Rt(F, F*) I F}, where F*
 is the empirical cdf of the bootstrap sample X*, ..., X* which is drawn randomly
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 from P. While the consistency of Q for Q flows from the consistency of F for F, a
 more detailed assessment of Q - Q is often useful, especially if one is trying to compare
 confidence limit procedures or if alternative approximations to Q are being considered.
 The majority of theoretical results (see Beran (1982, 1984) and Hall (1987a), and
 references therein) deal either with estimates T which are functions of vector averages,
 so that standard expansion techniques apply, or with estimates representable by
 Volterra series,

 T = O + n-' E a,(Xj; F) + n-2 Za2(Xi, Xj; F)+..., (5)
 in which a1 is the influence function of T. Some of the relevant results for confidence
 limit methods are reviewed by DiCiccio and Romano (1988).

 In what follows, the discussion focuses first on some of the questions raised in

 this section, and then reviews a variety of bootstrap methods, in a rather non-technical
 way. Throughout we shall denote bootstrap samples of data by X1, ..., Xn* and
 corresponding statistics by T*.

 3. NUMERICAL TECHNIQUES

 The exact calculation of property Q = E{Rt(F, F*) I P} is ordinarily not possible.
 There are essentially two ways to proceed: theoretical approximation and purely
 numerical approximation.

 The simplest type of theoretical approximation would be to replace T = t(F) by its
 linear approximation

 TL= t(F) +n1 al(Xj; F), (6)
 i.e. the first two terms on the right of (5). From TL is derived the N(0, V) approximation

 for the distribution of n1l2(T-0), with V = n-1 {a1(Xj; F)}2. This is the (infinitesimal)
 jackknife method, which may often be adequate, but which negates a potential
 advantage of bootstrap methods, namely high order or small sample accuracy.

 The simplest example of numerical approximation, illustrated by (3), is the
 generation of B samples X*, b = 1, ..., B, from F followed by calculation of

 B

 PSim = t B-E R(F, Fb*).
 b= 1

 The required magnitude of B will depend on the form of Rt, but will often be at
 least 100.

 A general discussion of improvement in numerical techniques by Thernau (1983)
 suggests several approaches, including the importance sampling and control methods
 familiar in Monte Carlo methodology. The different approach of balanced sampling
 has been studied in more detail (Obgonmwan and Wynn, 1986; Davison et al., 1987;
 Graham et al., 1987). The central idea here can be expressed in two ways, the more
 profitable of which is as follows. Write a simulated sample from F as (x<(1), ..., x<)),
 and 4 = (4(1), . . ., 4(n)). Then the B vectors 4, . . .,. B which define the bootstrap
 simulation should cover the n-dimensional lattice cube {1, 2, ..., n}n in as uniform
 a manner as possible. Exact uniformity on one- and two-dimensional margins is
 achievable by use of classical experimental designs. For example, one-dimensional
 balance is achieved if the B x n matrix with (b, i)th element 4b(i) defines a randdmized
 block design with columns as blocks, entries as treatment labels. The second half of
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 Table 1 illustrates this with B = 10, corresponding to a single randomized block. Note
 that the average of the 10 x*s is necessarily equal to x, thereby yielding a correct
 estimate of zero bias for X:

 estimated bias = B' 1 (Xb - x) = 0.

 Also the variance of the 5x*s is closer to the correct value n- 1&2 for the variance of X.
 Two-dimensional balance can be achieved using orthogonal Latin squares, and a

 somewhat weaker form of balance, suitable for homogeneous data, is achievable using
 balanced incomplete block designs (Graham et al., 1987). What two-dimensional
 balance gives is error-free approximation of bias and variance for the linear part of
 a statistic, which for large samples is adequate.

 What do such designs achieve in practical terms? Probably a fourfold or fivefold
 reduction in B for any given level of simulation error, if we are approximating moments
 of T. But for estimating the 100pth percentile, say, of T -0 by the (B + 1)pth ordered
 value of T* - T, balanced designs are not so effective, especially for p < 0.05 or p > 0.95.
 It seems quite likely that a more effective strategy is to select among one-dimensional
 balanced designs using a rejection technique along the lines suggested by Ogbonmwan
 and Wynn (1986). Further research is needed in this area.

 Switching now to theoretical approximation, particularly for the probability
 distribution of T*, one elementary approach is to modify normal approximations
 with Edgeworth corrections. More interesting, and usually more effective, is the use
 of saddlepoint approximations (Davison and Hinkley, 1988). For example, consider
 again T = X, and write the empirical cumulant generating function of X as

 K(R) = log e'xdPF(x) = log(n-1 E e"xi).

 Then a direct application of equation (4.9) of Daniels (1987) gives

 P = Pr(T*-t < y I D(wy) + qO(wy)(w - z37 1),
 where

 WY= [2n{ A+Y(t + y) - K(2+)}]"2 sgn(At+Y),

 ZY = A+ {nK"(t )J 1/2

 with At+ y the unique solution of KR'(2) = t + y. Table 2 gives a brief summary of
 numerical results so obtained for the data of Table 1, in the form of percentile
 approximations. Comparison is made to exact results (simple numerical simulation
 with B = 50 000) and normal approximation results. The saddlepoint approximation
 is excellent.

 There are two difficulties with the saddlepoint approximation method in this
 context. First is a technical difficulty associated with the discreteness of F; this makes
 formal proofs of asymptotic expansions complicated, but not impossible. More
 important is the limited range of problems to which known saddlepoint approxima-
 tions apply, essentially those for which T solves a linear estimating equation of the form
 St(Xj, T) = 0 with *f(x, t) monotone in t. An ad hoc approximation can be obtained
 via series expansions of T* - T, but the result does not have the degree of accuracy
 typical for saddlepoint methods. A key unsolved problem is to derive saddlepoint
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 TABLE 2

 Approximations to bootstrap percentage points for X - ,; data in Table 1

 p

 0.001 0.01 0.05 0.10 0.90 0.95 0.99 0.999

 Exact percentilet -6.34 -5.55 -3.34 -2.69 2.87 3.73 5.47 7.52
 Saddlepoint percentile -6.31 -5.52 -3.33 -2.69 2.85 3.75 5.48 7.46
 Normal percentile -8.46 -7.03 -3.74 -2.91 2.91 3.74 5.29 7.03
 Fisher-Cornish -6.51 -5.74 -3.48 -2.81 3.00 3.97 5.89 8.19

 t From 50000 random samples.

 approximations for non-linear statistics such as T = n - la(Xj) + n - 2Xlb(Xi, Xj):
 such approximations would give accurate results for statistics with expansion (5).

 What of the other possible numerical techniques? The Monte Carlo control method
 can be applied to approximate moments of a statistic, for example using TL in (6) as
 control, since TL has known moments under sampling from F. Use of the Monte
 Carlo method of importance sampling is currently under investigation by Dr A. C.
 Davison. For approximation of probabilities, such as (2), one obvious approach is to
 apply smoothing techniques to the empirical distribution of simulated values of the
 relevant statistical quantities, such as X*- X.

 4. CONFIDENCE LIMIT METHODS

 The most studied problem in (nonparametric) bootstrap methodology is the
 determination of reliable confidence limit procedures. This is the subject of the
 companion paper by DiCiccio and Romano (1988), so an exhaustive survey will not
 be attempted here.

 The basic problem arises from the discrepancy between (1) and (2). In principle a
 confidence interval procedure for parameter 0 based on estimate T would be solved
 by finding ap such that Pr(T -0 < ap) = P, for given P. Then, for example, equitailed
 1-a limits for 0 would be T-a, -/2 and T-aa12, cf. (4). Bootstrap estimates ap are
 usually not satisfactory, in essence because T* - T is not pivotal for Fs within probable
 range of F. A useful analogy is the problem of setting confidence limits for a normal
 mean, where the N(O, &2/n) approximation for 5x - p would not give a satisfactory
 confidence distribution for p if n were very small. Actually the solution to the latter
 problem suggests at least one of several possible approximate solutions for the
 nonparametric bootstrap problem.

 One way to construct a reliable confidence limit procedure is to construct an
 invertible pivot, say Q(T, 0, S) with S containing relevant ancillary features. Familiar
 examples in classical statistics are Student's t statistic for a normal mean, and X/4u
 for an exponential mean. In the bootstrap context we would require that Q* = Q(T*,
 T, S*) be very close to pivotal under sampling from Fs within probable range of F.
 Analogy with the normal mean problem suggests trying Q = (T* - O)/S* with S* a
 nonparametric estimate of standard error such as is provided by a jackknife method
 (Miller, 1974; Efron, 1982, ch. 6). In his detailed theoretical comparison of confidence
 limit procedures, Hall (1988) shows that this Studentized form leads to ond-sided
 confidence limits whose coverage is correct to O(n- 1/2).
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 A different pivotal construction is offered by Beran (1987), who mimics the
 prqbability integral transform approach. Thus if Qo(T, t) has cdf Go under sampling
 from F, then Q = GO(QO(T, 0)) is very nearly pivotal. If G is the distribution function
 of Q under sampling from F, and if Q is monotone in 0, then solutions to

 G(Q(T, 0)) = ocx and 1 -
 define approximate equitailed 1 - oc limits for 0. The difficulty is that G is based on
 second-level bootstrapping, i.e. sampling from samples from P: see below. On the
 surface this suggests the need for a rather extravagant numerical simulation, perhaps
 using 105 or 106 samples. The theoretical and numerical properties are comparable
 to those for the Studentized estimate approach outlined above. The method seems
 worthy of further study.

 It may be appropriate here to say a little more about second-level bootstrapping,
 a process which has several potential uses. Suppose that one wants to check whether
 or not T - 0 is pivotal, considering this in the first instance as the limited question
 as to whether or not var(T I F) = c2(0) is in fact constant. (Note that this ignores the
 possibility of another parameter 0 affecting the distribution of T.) An empirical
 strategy is to simulate several samples from each of several populations, each of which
 has a different value of 0. For each population, then, one obtains an estimate of cT2(O):
 these estimates are compared to assess possible dependence on 0. In the nonparametric
 bootstrap context, a population and its 0 value are equated to a simulated sample
 (x*, ..., x*) and its 0 estimate t*. Therefore o2(t*) is estimated by taking samples
 (x**, ..., x**) from (x*, ..., x*) and computing the empirical variance &2(t*) of the
 t** values which are the 0 estimates calculated from (x**, ..., x**). One might take
 50 t**s for each of 20 t*s. This idea appears to be due to P. L. Chapman; see Chapman
 and Hinkley (1986).

 By way of illustration, Fig. l(a) shows estimated 5th and 95th percentiles of the
 error in sample correlation coefficient r for 20 values of population correlation
 p, all obtained from two-level bootstrapping of one sample of n = 20 bivariate normal
 pairs. Fig. l(b) gives corresponding results for Fisher's z transform, z = tanh - 'r.
 Note that in the first plot, the estimated percentiles of r - p mimic the normal theory
 trend: the fitted curves are close to + 1.645(1- p2)/e/n. The plot suggests strongly
 that r - p is not pivotal. On the other hand, the near-horizontal trends of percentiles
 in the second plot suggest that error in z is very nearly pivotal. This would imply
 that bootstrap results for z are reliable approximations to theoretical properties of z.

 Beran's pivotal construction is not the only confidence limit method based on
 second-level bootstrapping. More recently Tibshirani (1987) has considered explicit
 use of smoothed versions of &2(t*) to obtain a variance-stabilized estimate

 rT

 U = h(T) - {&2(t*)}I- /2dt*,

 to which is then applied a confidence limit procedure for the invertible function h(0).
 Initial results show the method to be competitive with the best known methods in
 many problems.

 The final method to be mentioned is the accelerated bias-corrected percentile
 method of Efron (1987), which attempts implicit rather than explicit use of variance
 stabilization, while at the same time recognizing that the variance-stabilized estimate
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 Fig. 1. Bootstrap estimates of 5% (0) and 95% (0) quantiles of (a) r - p and (b) z - = tanh-'r - tanh-1p
 obtained from analysis of one sample of n = 20 pseudo-normal pairs: values of p are B = 25 r*s; estimated quantiles
 of r are quantiles of empirical cdf of r** from 100 second-level bootstrap samples
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 h(T) may have bias of order n' and standardized skewness of order n - 1/2. This leads
 to the working assumption that for appropriate h(-) and constants z, oc and wB

 _{h(T) -h(O)}
 -1 + oczh(O)

 has a standard normal distribution. Efron's use of this assumption in the bootstrap
 context does not involve knowing h(-), r, oc or ,B. The reliability of the resulting
 confidence limit method is rather uneven, albeit often very good. One obvious defect
 is that for large enough cx, Q may not be monotone over an appropriately wide range
 for 0. DiCiccio and Romano (1988) discuss the method in detail.

 There are many empirical studies of the performances of bootstrap confidence
 limits, and the results shown in Table 3 seem quite representative. Here T is the mean
 X of samples of size n = 20, artificially generated from the x2 distribution. For each
 sample, bootstrap simulation with B = 1000 was used. Table 3, taken from Owen
 (1987) shows empirical error rates of nominal 90% equitailed intervals for mean 0,
 based on 1000 data sets.

 A different approach to bootstrap assessment of parameter uncertainty is via a
 nonparametric likelihood. This is discussed separately in Section 8.

 5. SIGNIFICANCE TESTS

 The connexion between confidence limits and significance tests (Cox and Hinkley,
 1974) may be exploited to test certain kinds of hypotheses about parameters. But a
 direct approach is also possible using bootstrap techniques, particularly for 'pure
 significance tests' (Cox and Hinkley, 1974, ch. 3). There are, of course, connexions to
 other nonparametric methods of testing.

 Suppose that T is a statistic proposed for testing hypothesis H, large values of T
 being evidence against H. We have indicated in Section 2 how the simple bootstrap
 approximates a probability such as Pr(T < d I F) by Pr(T* < d I F). Now a different
 sampling distribution is required, because the test P value is calculated under the
 restriction imposed by H. If 5(y,) is a distance measure between distributions, and if
 'H is the set of all distributions satisfying H, then the bootstrap data distribution
 might be taken as

 FH minimizing b(F, F) for F E -H.

 TABLE 3

 Error rates of bootstrap 90 % confidence intervals for mean 0 of X2, samples of size n = 20
 (Owen, 1987)

 Method Proportion of times Proportion of times Aggregate
 0 < lower limit 0 > upper limit error rate

 Exact parametric 0.051 0.056 0.107
 Bootstrap percentile 0.023 0.150 0.173

 Efron's accelerated, bias-corrected 0.050 0.105 0.155
 bootstrap

 Bootstrap Student t 0.038 0.072 0.112
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 The bootstrap test P value corresponding to observed statistic tobs would be

 PH= Pr{T tobs I FH}, (7)

 where TH is the test statistic calculated under random sampling from F
 There are basically two ways to obtain FH from F, one being to change the

 probabilities at x1, ..., x, from n- to w1, ..., wn; the other being to redistribute the
 probabilities n'- to a wider support than x1, . . ., xn. Efron (1982, ch. 10) discusses
 applications of the former, specifically embedding F in an exponential family; see also
 Owen (1987).

 Uses of modified support are described by Ducharme et al. (1985) and by Young
 (1986). For example, in one of Young's applications, the hypothesis H asserts
 independence of the two components of X = (Y, Z), and FH is naturally taken to be
 the product of the empirical marginal cdfs 6 and H of Y and Z respectively. The
 resulting test is therefore very similar to a randomization test, the difference being
 only that between sampling with and without replacement. The same phenomenon
 would occur in a two-sample comparison, where a common aggregate distribution
 would be defined by FH.

 A rather striking application of the bootstrap is Silverman's (1981) test for
 unimodality of a distribution, which uses smooth density estimates as the particular
 form of probability redistribution. This nicely illustrates the usefulness of bootstrap
 methods when classical theoretical approaches to calculation of the P value are
 intractable. Another example is outlined in Section 6.

 6. REGRESSION PROBLEMS

 Application of bootstrap methods in regression is of potential importance because
 of the ever-increasing generality of regression methods, for which the classical methods
 of assessment used in textbook linear regression are inappropriate. Efron (1986) gives
 a useful introduction, and Wu (1986) with its accompanying discussion refers to much
 of what is known about properties of the bootstrap in regression analysis. There are
 two general types of problem, one the assessment of accuracy of regression coefficients
 or fitted values of mean response, the other being selection of variables or choice of
 model on the basis of some measure of model fit.

 Suppose that we have a particular form of model yi = t4(xi, I) + si connecting
 continuous responses yi to explanatory variables xi = (x1i, ... ., xpi), with sis as random
 errors. Given some method of fitting the relationship, such as least squares or
 M estimation, we obtain coefficient estimate i and fitted values yt = 4t(xi, 0). Inspection
 of the residuals ej =yi - ti, or prior evidence, may suggest that the errors s are
 homogeneous, with distribution F estimable by the empirical distribution F of
 residuals. If so, the bootstrap methods discussed earlier extend straightforwardly,
 simulated data sets data* taking the form {(xi, y), i= 1, . . ., n} with yi=l i + e,
 where se* is randomly sampled from (e, ..., n). Fitting the model to data* gives
 simulated estimate * and fitted values ji. Repeated simulation then leads to required
 assessments of uncertainty as in earlier sections.

 As an example, consider the following significance testing problem. The mean

 relationship y(x) is either linear (hypothesis H) or piecewise linear with two linear
 segments intersecting at x = y. Statistic T is the normal theory likelihood ratio
 test statistic, whose exact null distribution is intractable even if errors e are normal.
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 In the terminology of Section 5, the empirical distribution of residuals ei from the
 linear regression is FH, and significance probability PH in (7) is calculated using
 samples yi* = 'i + 0 as described above with fii the fitted linear regression values.
 This method was applied to a small set of data from a noise signal experiment in which
 the n = 9 values of x were natural logarithms of 10, 20, 30, 50, 100, 150, 200, 300 and
 500 with corresponding values of y being 87.83, 86.50, 84.83, 83.50, 80.17, 79.50, 79.17,
 78.67 and 78.67. The estimated point of intersection in the two-segment model is
 9= 5.1 and the test statistic is t = 14.7. From B = 1000 bootstrap samples, PH was
 calculated to be approximately 0.02. The null distribution of T, as estimated by the
 empirical distribution of TH, is not at all close to the x2 distribution which an (invalid)
 appeal to classical theory might suggest; see Feder (1975).

 One might argue that raw residuals ei should be modified prior to use as simulated
 errors, e.g. by standardizing to remove the effects of leverage and by adjusting to zero
 mean. Unpublished numerical evidence supports such modifications. Whether or not
 one need use complicated modifications such as those described by Cook and Tsai
 (1985) for non-linear models is unclear.

 A more interesting context is that in which errors are not homogeneous, so that a
 single empirical error distribution is inappropriate. One simple approach is then to

 consider (xi, yi) as sampled from a joint distribution F, the implication being to sample
 vectors (x*, yi*) from the data vectors in the bootstrap simulation. There are two
 drawbacks with this approach. First, it would often be the case that var(ei) changes
 smoothly with xi or pi, and use might be made of this. Secondly, on the general
 grounds of requiring inference to be conditional on the design D = (x1 . . . x x), one
 should not risk having simulated data sets whose designs D* = (x*, ..., x*) are very
 different from D.

 The last point could be dealt with separately either by pre-stratification or
 post-stratification of the sampling of data vectors, in either case forcing D* and D to
 be close in a meaningful sense.

 The design difficulty may be moot, of course, if some form of modelling for the
 errors is used. An example of this in nonparametric regression is given by Efron
 (1986). A local smoothing algorithm is used first to fit j^(x), and is then applied to
 squared residuals e^2 to fit a smooth relationship between 2 = var(?) and x, say a

 This permits calculation of homogeneous standardized residuals ri= ei/(xi), and
 thence defines a bootstrap model

 Yi* = ^(xi) + &(xi)ri

 with the ri* randomly sampled from (r1, ..., rn). Bootstrap samples are then used to
 obtain confidence bands for u(x).

 So far we have assumed that responses y are continuous and that errors are additive.
 How might one apply bootstrap methods to responses which are counts, i.e.
 non-negative integers, say? One approach is to use the local linearization which GLIM
 uses for its iterative weighted least squares fitting of generalized linear models. But
 such an approach offers little more than jackknife methods. If count data are thought
 of as extended Poisson, that is with variance function 4(x),u, then a locally smooth
 estimate of 0(x) could be produced and the data could be analysed appropriately in
 GLIM. More needs to be learned about the possible role of bootstrap methods in
 such situations.
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 Special mention should be made of cases where replication exists at every design
 point. In such cases it would be possible to estimate response distributions Fi at each
 xi, and thence bootstrap by sampling from Pi at each xi. This approach of course
 applies to multisample problems, unless separate variance components are involved
 (Section 9). An open question is how well the bootstrap will perform when each of
 very many Fis is based on few responses. The results of Bickel and Freedman (1982)
 are probably relevant. There is a very useful series of papers by Freedman and Peters
 (1984 and references therein) on the performance of bootstrap methods in econometric
 regression models.

 The rather different types of problems typified by model selection, variable selection
 and prediction assessment are problems to which cross-validation techniques (Stone,
 1974) are often applied. A detailed analysis by Efron (1983) shows that cross-validation
 techniques may be inferior to bootstrap assessments in many cases; see also Bunke
 and Droge (1984). This important problem will not be discussed here.

 7. CONDITIONAL BOOTSTRAP METHODS

 In the preceding section the idea of conditioning was mentioned briefly. Condition-
 ing on ancillary statistics is an important general component of statistical inference.
 As to whether or not relevant conditioning is generally possible in bootstrap methods,
 the situation is unclear.

 A crucial issue may be the nature of the conditioning variable, or ancillary statistic.
 For example, suppose that E(T-6 0a, F)=b(a-ac, F) with o=E(AIF) or with
 a = a(F) and a = a(F). A bootstrap simulation can estimate b(-, F) by b(-, F), but this
 cannot be used without knowing a, at least with error negligible compared to a -a.
 This difficulty seems to preclude conditional bootstrap analysis of the sample mean,
 for example. The regression application suggested in Section 6 is different in the sense
 that the effect of an ancillary measure a of the design D does not involve the mean of A.

 There is also the difficulty of choosing a in the absence of a model, accompanied
 by the difficulty of estimating properties conditional on a. For example, in a regression
 problem with non-homogeneous errors, the precise form of effect of the design D on
 the variances of coefficients will usually be unknown. However, if the regression fit
 is approximately linear with weight wi attached to (xi, yi), and if var(yi I xi) is estimated
 by &V, then it would seem appropriate to define a in terms of the elements of lw3 VxixT,
 by analogy with weighted least squares linear regression. Once a is chosen, the
 required conditional property would be estimated using discrete partitions of the
 bootstrap simulation. For example, var(, I a) could be approximated by a smoothed
 version of var(p* I a*) evaluated at a* = a.

 In some, possibly rare, cases conditional distributions will be amenable to special
 numerical techniques, such as stratified simulation or conditional saddlepoint
 approximations. One example of the latter is given by Davison and Hinkley (1988).

 It may be worth remarking that in classical statistics the likelihood function itself
 provides exact or approximate conditional inference (Barndorff-Nielsen, 1983; Cox
 and Reid, 1987). Quite possibly one might use the bootstrap likelihoods of Section 8
 in the same way.

 8. BOOTSTRAP PARTIAL LIKELIHOODS

 Alchemy failed. But bootstrappers have produced likelihoods, or confidence
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 distributions. For want of something better, the term partial likelihood may be
 appropriate.

 One direct approach by Hall (1987) is to derive a smooth density estimate from
 the bootstrap simulation values of the Studentized pivot Q = (T - 0)/S mentioned in
 Section 4. Such a partial likelihood has good properties when used to calculate
 confidence sets, and may show interesting features which standard normal approxima-
 tions do not. A second approach is via the second-level bootstrap of Section 4, with
 likelihood evaluations at 0 = t* being calculated as approximate densities of T** at t*.

 A more classical analogy is pursued by Ogbonmwan and Wynn (1988) for problems

 involving contrast parameters. Suppose that data y = Yl, ..., yn are such that, for the
 correct value of 0, the transformed vector g(y, 0) = g1(0), . . ., g.(0) may be assumed
 to be a random sample from a fixed distribution function Fo. If T = t(y) is the
 estimating function for 0, define To = t(g(y, 0)) with observed value to. Then a partial
 likelihood for 0 is the density of To at to. The bootstrap version of this definition
 involves replacing Fo by the empirical distribution function Fo defined by data values
 g(y,0), and approximating the density of statistic T* obtained from samples generated
 by Fo. In some cases numerical simulation can be avoided, as in the following example,
 taken from Davison and Hinkley (1988).

 Suppose that 0 is the difference between means for two populations from which
 the following two samples were drawn

 sample 1: 37.5 34.8 38.9 38.6 37.0 37.4 36.5 38.4 38.0 30.7

 sample 2: 37.7 36.3 38.0 37.0 37.6 33.2 36.7 27.4 37.1 37.4

 Denote general samples by (x1, ..., xm) and (xm+ 1, ..., xm+n), and suppose that we
 choose to estimate 0 by t=M 1 1+nXi-_m-1E,xi. Since the two sample variances
 are nearly equal, it seems reasonable to take g(x, 0) = (x1, , XM, Xm+ 1 - 0 .
 Xm+n - 0). If g1, ..n., g*+ denotes a random sample from the elements of g(x, 0), then
 T* = n- l'm+n g m- 'mlg . A saddlepoint density approximation can be obtained
 for T, and its evaluation at to = t -0 defines the bootstrap partial likelihood. The
 result is graphed in Fig. 2, together with the normal theory modified profile
 likelihood.

 Note that this type of bootstrap partial likelihood could just as easily be based on
 any estimate T, although the saddlepoint simplification requires that T be defined
 by linear estimating equations. The method is very similar to the use of randomization
 distributions.

 A more direct approach is taken by Owen (1987), who considers F to be embedded
 in a class of distributions Yx whose support is x1, ..., xn in the simple case of
 homogeneous data. Then if 0 = t(F), the bootstrap likelihood of 0 is the profile
 likelihood under the 'model' 3x. More concretely, consider F, to attach probabilities
 Wl ... .,wn at points xl,. . ., Xn; F is the maximum likelihood estimate with wi _ n=
 i= 1, ..., n. Then define the bootstrap likelihood to be

 n

 BL(0)= sup H wi.
 w:t(Fw)=0 i=l

 Owen (1987) outlines and applies an algorithm for calculating BL(f). He also
 demonstrates that, at least in simple cases, conventional chi-squared asymptotics
 apply to the log-likelihood ratio.
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 Fig. 2. Relative likelihoods for two-sample contrast parameter 0: the full curve is the saddlepoint approximation
 to bootstrap likelihood; the broken curve is the normal theory modified profile likelihood

 One unusually simple model where an empirical likelihood and resulting conditional
 analysis are possible is the change-point model. The basic theory and one application
 are described by Hinkley and Schechtman (1986). Another application is to the
 mean shift analysis of the series of UK coal-mining disasters (Andrews and Herzberg,
 1985, p. 51). The model for count xi in the ith period of length one year is that
 Pr(Xi = r) = fo(r), i < 0, and Pr(Xi = r) = f1(r), i > 0, successve counts being independ-
 ent. A nonparametric profile likelihood for 0 is therefore

 t n

 PL(t) = Hl 0(xi t) Hl SJ(xit),
 i=1 i=t+1

 where

 t n

 t0(rjIt) =t-' 6 (xi-r), t1(rjIt) =(n-t)- 1 E 6(xi-r).
 i=l i=t+l

 Table 4 shows the crucial part of the data series and corresponding values of PL(t)
 after normalizing to unit sum: the result is an approximate conditional distribution,
 in that if D maximizes PL then

 Pr(O-0 = d I a) oc PL() - d).

This content downloaded from 128.97.55.209 on Thu, 02 Mar 2017 22:59:22 UTC
All use subject to http://about.jstor.org/terms



 1988] Bootstrap Methods 335

 TABLE 4

 Part of the annual UK coal-mining disaster frequencies xt and corresponding normalized bootstrap
 likelihood PL (t), t = calendar year - 1850

 Year t 34 35 36 37 38 39 40 41 42 43 44 45 46 47
 (1884)

 Frequency x, 2 3 4 2 1 3 2 2 1 1 1 1 3 0

 Normalized 0.002 .003 .189 .199 .048 .100 .130 .220 .061 .021 .008 .004 .008 .001
 PL(t)

 The ancillary a here is the set of likelihood ratio increments PL(0 + k)/PL(O + k - 1),
 most influential being those for small I k 1. These same increments could be used to
 partition a bootstrap simulation if a non-likelihood analysis were performed (Hinkley
 and Schechtman, 1987). Note that bootstrap simulation extends easily to more
 complicated models, such as first-order Markov processes.

 9. OTHER APPLICATIONS

 The types of applications mentioned thus far are mostly elementary, save for
 regression. There is a growing literature on other, more complex applications, some
 of which are mentioned in this section; see also the general remarks in Section 10.

 One traditional area of application for subsampling techniques is the analysis of
 complex sample surveys. In the usual case where data sampling is without replacement
 from finite populations, ordinary bootstrapping (done with replacement) may produce
 inadmissible simulated samples. Partly for this reason, a series of special bootstrap
 techniques has been proposed in the sample survey literature. Some of the techniques
 are appraised by McCarthy and Snowden (1985), who give preliminary endorsement
 to the simple modification of increasing bootstrap sample size from n to n/(1 -f),
 where f is the data sampling fraction.

 Problems involving time series, or more generally a stochastic process, raise the
 difficulty of the single realization. What plays the role of F? There are two possible
 elementary strategies: (i) split the realization into several pieces, and sample from
 these, or (ii) fit a model with independent innovations, and simulate realizations by
 adding sampled residuals to fitted values. More sophisticated versions of these
 strategies will be required for fairly general application.

 Perhaps more conventional are problems involving variance components, such as
 occur in empirical Bayes models. The essential point here is that bootstrap simulation
 should, implicitly or explicitly, simulate each component of variability. Precisely how
 will depend on the application. Suppose, for example, that a notional model for the
 data matrix xij of p samples is xj = pi + gij, where the ps and ?s respectively have
 distributions G and F. If we are interested in a statistic symmetric in the samples,

 such as x.. or maxi xi., then we can simulate data x!k by x.* = pi* + ei*, where pi* is
 randomly sampled from estimates (ft1, ..., j4) and e!k are randomly sampled from
 residuals {xi - xi.}. The estimates ji would be of empirical Bayes type but corrected
 to have appropriate mean and variance, e.g. 5x.. and the unbiased estimate of var(p).
 Such a simulation would not be appropriate if, say, we were interested in mean P1 a
 priori, for then one simulated sample should use =14 Further discussion of these
 kinds of applications will be found in Hill (1986) and Laird and Louis (1987).
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 10. GENERAL REMARKS

 One might observe that bootstrap methods essentially embrace, or enlarge upon,
 familiar methods of simulation, subsampling and permutation. What is new is the
 generality of approach, the range of potential applications and the massive use of
 computer power.

 It would be presumptive to dismiss the many simple applications because of existing
 classical methods: such applications are mere scale exercises, which help to tune the
 instruments and their players in the bootstrap orchestra so that they will perform
 better in the complex pieces of modern data analysis. Thus, for example, bootstrap
 methods may prove to be uniquely reliable tools for analysing nonparametric curve
 fits, complex pure significance test problems and nonstationary time series models.
 At the very least bootstrap methods provide a simple approach to assessment of the
 sensitivity of traditional methods to model assumptions. This thought also suggests
 the possible use of simulated samples to generate diagnostics, akin to the more usual
 case deletion diagnostics.

 Because bootstrap methods also apply in the arena of model assessment, they are
 pertinent to the larger, often neglected area of decision analysis under model
 uncertainty.

 In the previous sections we have not commented on the non-negligible tendency
 for misapplication of bootstrap methods, in particular the misuse of simple random
 sampling from data sets. There is a very clear need to bring classical statistical theory
 to bear in the development of reliable methodology, as evidenced by the importance
 of pivots in confidence limit methods. In this context one should also consider Bayesian
 approaches to bootstrapping, which involve Dirichlet models; see Rubin (1981) and
 Banks (1987).
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