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Understanding Anisotropy Computations1

Marian Eriksson2 and Peter P. Siska2

Most descriptions of anisotropy make reference to reduced distances and conversion of anisotropic
models to isotropic counterparts and equations are presented for a certain class of range-anisotropic
models. Many descriptions state that sill anisotropy is modelled using a range-anisotropic structure
having a very elongated ellipse. The presentations typically have few or no intervening steps. Stu-
dents and applied researchers rarely follow these presentations and subsequently regard the programs
that compute anisotropic variograms as black-boxes, the contents of which are too complex to try to
understand. We provide the geometry necessary to clarify those computations. In so doing, we provide
a general way to model any type of anisotropy (range, sill, power, slope, nugget) on an ellipse. We note
cases in the literature in which the printed descriptions of anisotropy on an ellipse do not match the
stated or coded models. An example is provided in which both range- and sill-anisotropic structures
are fitted to the experimental variogram values from an elevation data set using the provided equations
and weighted nonlinear regression. The original variogram values are plotted with the fitted surfaces
to view the fit and anisotropic structure in many directions at once.
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INTRODUCTION

A number of books (Isaaks and Srivastava, 1989; Pannatier, 1996; Goovaerts,
1997; Myers, 1997) present the concept of geometric anisotropy using the re-
duced distance technique and “conversion to an isotropic model.” While not al-
gebraically incorrect, this conversion process is confusing to most students and
many practitioners, who rarely follow these presentations and subsequently regard
the programs that compute anisotropic variograms as black-boxes, the contents of
which are too complex to try to understand. The purpose of this paper is to help
clarify the geometry behind and computations for anisotropy. For those needing
a strong foundation in all aspects of variogram estimation, such an understand-
ing is requisite. Those interested only in fitting variogram models, and who are
neither interested in the interpretation of model parameters nor will have cause
to code their own programs, can continue to rely on available programs. We will
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Figure 1. Examples of variograms with anisotropy; A, sill anisotropy in direction 30, B, range
anisotropy in direction 30, C, sill in direction 30 and range anisotropy in direction 90, and D, nested
range anisotropic structures in directions 90 and 150.

restrict ourselves to the two-dimensional case; extension to three dimensions is
straightforward.

There are three concepts that are muddled together in the presentation by
Isaaks and Srivastava (1989) of anisotropy—namely, geometric anisotropy, zonal
anisotropy, and nested structures. Zimmerman (1993) further noted the incon-
sistent use, in the literature, of the terms geometric and zonal anisotropy. He
suggested, instead, adopting the termsnugget anisotropy, range anisotropy, and
sill anisotropy. Examples of range and sill anisotropies are shown for a spherical
model in Figures 1A and 1B. In each case, the direction of the maximum, sill or
range, is 30◦ north of east. Figure 1C combines range and sill anisotropies for a
spherical model. The direction of maximum sill is 30◦ and the direction of maxi-
mum range is 90◦. Complex variogram models are often constructed as the sum of
simpler models. The simpler models are called nested structures. Figure 1D shows
a variogram constructed as the sum of a spherical model with maximum range
100 in direction 90 and another spherical with maximum range 50 in direction
150. The axes in Figures 1A–1D are lag-distanceh, angle of separationφ, and
variogram value 2γ (h, φ). We assume that angles are measured counterclockwise
from east. Some variogram and Kriging implementations use angles measured in
degrees azimuth (clockwise from north).
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RANGE ANISOTROPY

Consider first the case of range anisotropy (Fig. 1B). It is assumed that the sill
c of all directional variograms is the same. The basic idea behind most anisotropic
modeling algorithms is that there is some separation directionθ in which the
directional variogram has maximum rangeamax. Perpendicular to that direction,
θ ± π/2, the range is assumed to be minimum,amin. The maximum and minimum
ranges define an ellipse (Fig. 2) that lies in the (1x,1y) coordinate system, wherex
andy denote the rectangular locational coordinates, usually eastings and northings.
That is,1x is the lag distance in thex direction and1y is the lag distance in the
y direction. The rangeaφ of the directional variogram for any separation angleφ

is assumed to lie on the ellipse.
Let u andv represent coordinates in a system oriented along the major and

minor axes of the ellipse. Then the equation of the ellipse is

(u/amax)
2+ (v/amin)2 = 1 (1)

We can convert the rectangularuv coordinates to and from polar coordinates via
the relationships

aξ =
√

u2+ v2 u = aξ cosξ

ξ = tan−1(v/u) v = aξ sinξ

whereξ is the angle of separation relative to theuv coordinate system andaξ is
the range in that direction (Fig. 2).

Figure 2. Geometry of a range-anisotropic ellipse as it relates to pointspi and pj

separated by distancehi j in the directionφi j . The range in directionφi j is aφi j .
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Rather than directly specifyingamax andamin, most implementations of vari-
ogram modeling require that the user specify the magnitudea of eithermaximum
or minimum anisotropy, and a factorη that relatesa to amax and toamin. If η > 1,
thenamin=a andamax= ηa. Similarly, if η < 1, thenamax=a andamin= ηa. For
concreteness assume, for now, thatη < 1.

Upon substituting into (1) we see that the ellipse can be represented as

a2
ξ cos2 ξ

a2
+ a2

ξ sin2 ξ

(aη)2
= 1 (2)

and that the range in directionξ , relative to theuv coordinate system, is

aξ = aη
/√

η2 cos2 ξ + sin2 ξ (3)

Now consider two pointspi and pj having locational coordinates (xi , yi ),
(xj , yj ), and translate the two points to the originp′i of the ellipse (Fig. 2). The

separation distance ishi j =
√
1y2

i j +1x2
i j and the separation angle, relative to the

1x1y coordinate system, isφi j = tan−1(1yi j /1xi j ). Relative to theuv coordi-
nate system the separation angle isξi j =φi j − θ . From (3), the range in direction
φi j is

aφi j = amaxamin
/√

a2
min cos2(φi j − θ )+ a2

maxsin2(φi j − θ )

or using the anisotropy ratio,

aφi j = aη
/√

η2 cos2(φi j − θ )+ sin2(φi j − θ ) (4)

The i j subscripting is used to emphasize the fact that these distances and angles
are defined by, and calculated for, the pair of pointspi and pj .

The range parameter, usually symbolized asa in an isotropic variogram equa-
tion, can be replaced by Equation (4) to obtain an anisotropic variogram model.
Figure 1B, for example, was created simply by plotting

2γ (h, φ)

=


5
(
1.5
(

h
√

0.32 cos2(φ− 30)+ sin2(φ− 30)
100· 0.3

)
− 0.5

(
h
√

0.32 cos2(φ− 30)+ sin2(φ− 30)
100· 0.3

)3)
for h≤ 100· 0.3/

√
0.32 cos2(φ− 30)+ sin2(φ − 30)

5 otherwise.

The sill isc= 5, the range, in directionθ = 30, isamax= 100, the anisotropy ratio
is η= 0.3, so the minimum range, in direction 120, isamin= 30. Notice that the
anisotropic variogram model is formally a function of both lag distanceh and
separation angleφ.
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Making Sense of the Reduced Distance Approach

As in the previous example of creating Figure 1B, Equation (4) can be used
directly in the calculation of variogram values. However, most authors and algo-
rithms use the reduced distance and standardized model approach. One could, of
course, begin with Equation (4) to obtain the computational algorithm as presented,
for example, by Isaaks and Srivastava (1989) or Goovaerts (1997), but it is more
instructive to take another look at the geometry.

Step 1

Theuv coordinate system is related to the1x1y coordinate system via the
rotation matrix

R=
[

cosθ sinθ
−sinθ cosθ

]
Again translate the two pointspi and pj to the center of the anisotropy ellipse
such thatp′i coincides with the center, and apply the rotation matrix top′j :[

ui j

vi j

]
=
[

cosθ sinθ
−sinθ cosθ

] [
1xi j

1yi j

]
(5)

Step 2

The intersection of linev= (vi j /ui j )u, defined by pointsp′i andp′j , with the
ellipse defines the pointpφi j having distanceaφi j from the center of the ellipse. So
substitutingv= (vi j /ui j )u into the Equation (1) of an ellipse, we find that

u2

u2
i j

(
u2

i j

a2
max

+ v2
i j

a2
min

)
= 1

Solving foru and substituting into the equation of the line gives

uφi j = ui j

/√
u2

i j

a2
max

+ v2
i j

a2
min

and

vφi j = vi j

/√
u2

i j

a2
max

+ v2
i j

a2
min
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Subscripts have been added tou andv to emphasize the fact that these are theuv
coordinates of the pointpφi j on the ellipse at separation angleφi j .

Noting that
√

u2
i j + v2

i j =
√
1x2

i j +1y2
i j = hi j and using the definitions of

uφi j andvφi j , the range in directionφi j is found to be

aφi j =
√

u2
φi j
+ v2

φi j
= hi j amaxamin

/√(
a2

minu2
i j + a2

maxv
2
i j

)
(6)

This is a reexpression of Equation (4) based on the rotated coordinates. Another
useful expression foraφi j in terms of the original coordinates is

aφi j = hi j
/√

b11x2
i j − b21xi j1yi j + b31y2

i j (7)

where b1= (cosθ/amax)2+ (sinθ/amin)2, b2= 2 sinθ cosθ (1/a2
min− 1/a2

max),
and b3= (sinθ/amax)2+ (cosθ/amin)2. This is, essentially, the form used by
Zimmerman (1993) in his Equation (8).

Step 3

A number of the common variogram models incorporate the range as the
divisor in the ratioh′i j = hi j /aφi j . This term is referred to as the reduced distance.
From (6) it is clear then that

h′i j =
√

u2
i j

a2
max

+ v2
i j

a2
min

(8)

The reduced distances can be used directly in the Gaussian, spherical, and expo-
nential variogram models. For example, Figure 1B can be generated by using the
rotation matrixR to convert (1x,1y) coordinates to (u, v) coordinates and then
plotting

2γ (h, φ) =


5(1.5

√
(u/100)2+ (v/30)2− 0.5(

√
(u/100)2+ (v/30)2)3)

for h ≤
√

u2+ v2

(30u)2+ (100v)2

5 otherwise.

Combining the Steps

The computations leading toh′i j can be combined as follows:[
u′φi j

v′φi j

]
=
[
1/amax 0

0 1/amin

] [
cosθ sinθ
−sinθ cosθ

] [
1xi j

1yi j

]
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andh′i j =
√

(u′φi j
)2+ (v′φi j

)2. This is the computational form presented by Isaaks

and Srivastava (1989) and repeated by Myers (1997). It differs from Goovaerts
(1997) only in that he assumed that angles were measured clockwise from the
north and used the relationships betweena, η, amax, andamin, rather thanamax and
amin, themselves. Journel and Huijbregts (1978) actually rotate back to the1x1y
orientation before computing the “reduced distances,” but that reorientation is
unnecessary.

Many authors (e.g., Isaaks and Srivastava 1989; Pannatier, 1996; Goovaerts,
1997; Myers, 1997; Deutsch and Journel, 1998) state, effectively, that the above
computations are equivalent to a rotation of axes, followed by the reduction of
the separation distance toh′i j , which allows the use of an isotropic model. This is
misleading. It is true that,givenφi j , the use ofh′i j = h′i j /1 in place of thehi j /aφi j

term(s) in a variogram model is equivalent to using a transformed variogram model
having range 1. However,h′i j is, itself, a function ofφi j . In no way are all direc-
tional models combined into a single isotropic model that has a range of 1. Im-
plicitly, an anisotropic model is a function of bothhi j andφi j and cannot be made
isotropic.

Note

In practice, the use of Equation (6) or (7) is to be preferred over that of
Equation (4) because they are computationally more efficient. Sine and cosine
evaluations are slow operations and the use of (4) requires at least one sine and one
cosine evaluation (depending on how it is coded) for each pair of points requiring
a variogram estimate. If theR matrix is permanently stored, then calculation of
aφi j in Equation (6) requires only one sine and one cosine evaluation. This fact
may be what has lead to the use of the reduced distance concept and the resulting
confusion concerning “equivalent isotropic” models. If one is simply fitting a vari-
ogram model and is not concerned with the interpretation of the model parameters,
then Equation (7) is preferred, as it requires neither the translation nor the rotation
of axes.

SILL ANISOTROPY

With sill anisotropy, the sill varies with direction. Clark (1980), McBratney
and Webster (1986), Isaaks and Srivastava (1989), among others, indicate that sill
anisotropy is not nearly as common as range anisotropy. Sill anisotropy has been
dealt with in a ratherad hocmanner. While range anisotropy has been clearly dealt
with by modeling the range as an ellipse, rather than modeling the sill directly, it
is usually assumed that directionally varying sills can be accommodated by using
two or more range-anisotropic structures, one with a very large anisotropy ratio.
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Using a Range-Anisotropic Structure with a Large Anisotropy Ratio

The approach to fitting a sill-anisotropic variogram surface using a range-
anisotropic structure with a large anisotropy ratioη can be thought of as a sequential
process. The motivation for the approach is explained with the help of Figure 3.
Assume, for the moment, that the variogram model displays no range anisotropy.
An isotropic model that well fits the experimental variogram in the direction of
minimum sill is computed. In Figure 3, this is represented in each panel by the
lower of the two surfaces. The spherical model was used for both structures. The
direction of minimum sill is 120◦ and the common range is 40. The sill in this
direction is five.

Now a second structure is added to the first. The sill of the second structure
is taken to be the difference between the maximum and minimum sills of the
directional variograms. In the case of Figure 3, the maximum and minimum sills
are eight and five, respectively. The minimum range in the second structure is 40
and the maximum is set to a very large value. In Figure 3 the anisotropy ratio was
set to 1000 so the maximum range was 40,000.

If we look at the form of the spherical model the reasoning for using the
elongated range ellipse approach to sill modelling becomes clear. Dropping thei j

Figure 3. Variogram surfaces displaying sill anisotropy modeled using the ellongated ellipse
approace. Parameters for the first structure, all four panels, arec1= 5, a1= 40, andη1= 1.
Parameters for the second structure arec2= 3,θ2= 120◦,η2= 1000, and A,a2= 40, B,a2= 10,
C, a2= 80, D,a2= 80.
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subscripting used in the previous section, the range-anisotropic spherical model
takes the form 2γ (h, φ)= c(1.5h/aφ − 0.5(h/aφ)3) where, as before,aφ is the
range in directionaφ . There will be a maximum lag distance that any application
will use. It will be determined by either the boundaries of the geographical region
under consideration or by the size of the window used for kriging, or both. In panels
A–C, it is assumed to be 100. Asφ approaches the direction of minimum sill for the
second structure, which is also the direction of maximum range, the denominator
in theh/aφ terms becomes very large andh/aφ → 0. Thus the contribution of the
second structure, in the direction of minimum sill, is negligible. It is largest in the
direction of maximum sill. The overall model for Figure 3A is

2γ (h, φ)= 5(1.5(h/40)− 0.5(h/40)3)+ 3(1.5(h/aφ)− 0.5(h/aφ)3)

whereaφ is computed as in the previous section, withamin= 40 andη= 1000.
We began the description of this example with the assumption that the under-

lying variogram model is not range-isotropic. From Figure 3A, it is apparent that
for angles of about 0–80, and at 120, the range seems to be close to 40. From about
0 to 80 the sill is constant at 8. The range in directions 80–170 is significantly
different from 40 and the sills appear to change with direction. In fact, by the very
act of using a range-anisotropic second structure, the range changes continuously
from 40 to 40,000 and the sill is constant at 8. This is not an argument against the
use of range-anisotropic structures as models of sill-anisotropic processes provid-
ing the fitted variogram fits the experimental variogram well in all directions over
the range of experimental data.

Figures 3B and C differ from Figure 3A only in the value used for the minimum
range of the second structure. For Figure 3B it was set to 10 and in Figure 3C it
was 80. The variogram surface in Figure 3C is generally smooth throughout except
for the bend at the range of the first structure and for the crease in the direction of
minimum sill. Indeed, models of this form always produce a crease in the direction
of minimum sill. Figure 3D is identical to Figure 3C except that the length of the
lag distance axis was increased to 400 to better indicate the constant sill and the
crease in the direction of the minimum sill.

Modeling the Sill as an Ellipse

The elongated ellipse procedure, just described, has become the standard
for fitting variogram models to experimental variograms exhibiting directionally
varying sills. Sill-anisotropic variograms, alternatively, can be fitted using the same
procedure used to model range anisotropy.

Let cmax be the maximum sill,cmin be the minimum sill,ν= cmin/cmax be
the sill anisotropy ratio, andθc be the direction of maximum sill. Then the sill in
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directionφ can be modeled as an ellipse using

cφ = cmaxν/
√
ν2 cos2(φ − θc)+ sin2(φ − θc)

=
√

u2
φ + v2

φ = h · cmaxcmin/
√

(cminu)2+ (cmaxv)2

= h/
√

b11x2− b21x1y+ b31y2

where [
u
v

]
=
[

cosθc sinθc

−sinθc cosθc

] [
1xi j

1yi j

]
and

b1 = (cosθc/cmax)2+ (sinθc/cmin)2

b2 = 2 sinθc cosθc
(
1
/

c2
min− 1

/
c2

max

)
b3 = (sinθc/cmax)2+ (cosθc/cmin)2

As an example, Figure 1A was generated by plotting

2γ (h, φ)= (3/
√

(3/8)2 cos2(φ − 30)+ sin2(φ − 30))(1.5(h/100)− 0.5(h/100)3)

for different values ofh and φ. Indeed, any directionally varying parameter,
whether it be the range, sill, slope, nugget, or whatever, can be modeled using
this approach provided that the assumption that the directionally changing param-
eters lie approximately on an ellipse is reasonable.

Zimmerman (1993) expressed concern regarding the use of sill-anisotropic
models because they are not second-order stationary.The question of sill-anisotropy
and stationarity will be addressed in another paper.

POWER MODELS

As usually written, the power model has the form 2γ (h)= cha, where 0<
a < 2. As just noted, either or both of the parameters in this model can be modeled
as an ellipse yielding, for example,

2γ (h, φ) = cφhaφ (9)

Pannatier (1996) and Deutsch and Journel (1998) both state that their software
handles anisotropy in the correct manner by calculating an anisotropic distance
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and leaving the parametera unchanged. Examination of theGSLIB code, however,
and empirical experience withVARIOWIN-fitted models reveals that, in the case of
η < 1, both programs use the equation

2γ (h, φ) = c′max(h
′)a = c′max(c

′
max/c

′
φ)aha

where

c′φ = c′maxc
′
min

/√
c′ 2min cos2(φ − θ ′)+ c′ 2maxsin2(φ − θ ′) (10)

is an elliptically varying parameter. This is because these programs computeh′ as√
u′ 2+ (v′/η′)2. The result follows from Equation (6). The meaning of the primes

will be made clear in a moment. No other programs were checked, but we suspect
that this usage is common. There is nothing inherently wrong with this model
sinceccommon,φ = c′max(c

′
max/c

′
φ)a can be considered a model for the anisotropic

slope parameter. However, there is no reason to believe that the slope parameter,
ccommon,φ in this case, should be related to the power parametera. Plotted in Figure 4
is the the shape formed byccommon,φ , asφ varies from 0◦ to 360◦, for the case of
c′max= 15,c′min= 9.402,a= 1.99, andθ ′ = 135◦. Also plotted is an ellipse having
identical major and minor axes.

Figure 4. Shape generated from the directionally
varying slope parameter of a power model used by
Cressie (1991) and implemented inGSLIB (1998) and
VARIOWIN (1996), together with an ellipse having iden-
tical major and minor axes. The parameters used are
Cressie’s.
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Cressie (1989, 1991, p. 217) also “miscalculated” the power model in this
way, though he stated the model asĉ0+ ccres,φha, whereĉ0 is a nugget structure
and

ccres,φ =
(
c2/a

maxcos2(π/4− φ)+ c2/a
min cos2(π/4+ φ)

)a/2
for the particular case ofθ =π/4. To fully understand the meanings of parameter
values that one must supply toGSLIB or VARIOWIN, it is instructive to establish
the relationship between theVARIOWIN-like parameterization and Cressie’s.

To establish the equivalence betweenccommon,φ and ccres,φ , simply substi-
tute the definition (10) of the elliptically varying parameterc′φ into ccommon,φ =
c′max(c

′
max/c

′
φ)a. After a little algebra, one finds that

ccommon,φ =
(

c′ 2/amax cos2(φ − θ ′)+
(

c′max

(
c′max
c′min

)a)2/a

sin2(φ − θ ′)
)a/2

=
(

c′ 2/amax cos2(θ ′ − φ)+
(

c′max

(
c′max
c′min

)a)2/a

sin2(θ ′ − φ)

)a/2

=
((

c′max

(
c′max
c′min

)a)2/a

cos2
((
θ ′ ± π

2

)
− φ

)
+ c′ 2/amax sin2

((
θ ′ ± π

2

)
− φ

))a/2

This is the general form for the equivalence of the two parameterizations. It is now
clear thatc′max= cmin, c′min= cmin(cmin/cmax)1/a and thatθ ′ = θ ± π/2. In Cressie’s
particular exampleθ =π/4, in which case it is also true that sin2(θ −φ)=
cos2(θ +φ). The reasonθ ′ = θ ±π/2 is that the direction of maximumc′φ is the
direction of minimumcφ . That is, becausec′max= cmin.

In Cressie’s example,cmax= 38,cmin= 15, andθ = 45. Thereforeη= 0.395,
c′max= 15,c′min= 9.402, andη′ = 0.627. Notice thatη′ = η1/a. The primed values,
θ ′, c′max, andη′, are those that one would provide toVARIOWIN or to GSLIB in
order to duplicate Cressie’s example. Figure 5 compares the resulting variogram
surface (panel A) obtained using Cressie’s parameters with that obtained using an
elliptically changing slope parameter 2γ (h, φ)= cφha (panel B).

WhenGSLIBorVARIOWINare used with a spherical, exponential, or Gaussian
model, one obtains identical fits by specifying either the maximum of the direc-
tionally changing parameters, the directionθ of this maximum parameter, and an
anisotropy ratioη less than one, or by specifying the minimum of the directionally
changing parameters, the direction,θ ± π/2 of this minimum, and an anisotropy
ratio 1/η greater than one. This is not true with the power model. If one were
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Figure 5. Panel A is Cressie’s (1991) variogram surface; panel B is the surface generated using a
power model with identical parameters but allowing the slope to vary along an ellipse.

to specify a power model with a slope parameter of 9.402 in direction 45 and
with an anisotropy ratio of 1.595, one would not replicate Cressie’s variogram
model.

In the case ofη>1 the roles ofcmax andcmin are switched throughout. A
development similar to that above reveals that forη>1, c′min= cmax andc′max=
cmax(cmax/cmin)1/a. As in theη<1 case, whenη is greater than oneθ ′ = θ ± π/2
andη′ = η1/a. In order to replicate Cressie’s Figure 4.3 in using an anisotropy ratio
greater than one inVARIOWIN, one would need to specify the “minimum” power
of 38, not 9.402.

PUTTING IT TO WORK

VARIOWIN (Pannatier, 1996) allows the user to interactively tweak variogram
parameters and to simultaneously view the changes in multiple directions (different
φ′s). However, becauseVARIOWIN’s maximum zoom level is fixed at the screen
size, it is difficult to view the results in more than four directions at any one
time. With highly anisotropic models, this is a limitation. In this section we will
demonstrate howVARIOWIN was used in combination with weighted nonlinear
regression to fit a variogram surface for a random function of elevation using the
ellipse-based approach for both range and sill anisotropies.

The data for this example are elevations obtained from topographic maps
in an area somewhat larger than a USGS quadrangle in southwestern Texas. The
“variogram surface” option ofVARIOWIN (Figure 6) was used to determine the ap-
proximate angles of anisotropy. There appears to be three directions of anisotropy:
one at about 20, one at about 70◦, and a third at about 100◦. A fourth direction
was at about 85◦ was identified by some of the fitted models. Twelve experimental
variograms were fitted from 0◦ to 165◦ at 15◦ intervals with an angular tolerance of
7.5◦and a lag distance of 200 m to a maximum separation of 8000 m. While view-
ing the experimental variograms in directions 0◦, 45◦, 90◦, and 135◦, VARIOWIN
was then used to fit a directional variogram consisting of two range-anisotropic
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Figure 6. Variogram surface fromVARIOWINwith directions and general shapes
of anisotropy identified. The particular directionsd1 andd4 are those identified by
the model in Figure 7E. They define the central rhombus of moderate variogram
values.d2 and d2⊥ define the central ellipse of low variogram values. Some
models hinted of another axis in directiond3.

structures: 2γ (h, φ)= c1Sphr(a1φ)+ c2Sphr(a2φ). This is an eight-parameter
model. The second structure had an anisotropy ratio of 1000, the maximum allowed
by VARIOWIN, indicating a sill-anisotropic variogram surface.

The parameters obtained fromVARIOWIN were then used as starting values
for the weighted nonlinear regression using the experimental variogram values in
all 12 directions. Iteratively reweighted least squares was used with weights equal
to N(h, φ)/γ (h, φ)2), whereN(h, φ) is the number of data values used to calculate
a particular experimental value, as suggested, for example, by Cressie (1991).

Figure 7 shows the resulting variogram surfaces. Panel A shows the re-
sult of fitting a single range-anisotropic structure, 2γa(h, φ)= c1Sphr(a1φ), to
the experimental variogram values of the elevation data. Panel B shows a sin-
gle sill-anisotropic structure, 2γb(h, φ)= c1φSphr(a1). The similarity of the two
surfaces is a result of the fact that the minimum range in panel A and the range
in panel B are both well beyond the maximum lag value displayed, and neither
fitted surface had an elongated ellipse. These are both four-parameter models.
The model used for panel C specified that both structures were sill-isotropic and
range-anisotropic. The fitted model (Table 1) indicated that one of the structures
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Figure 7. Variogram surface fitted to experimental variogram values from elevation
data. A: 2γa(h, φ)= c1Sphr(a1φ ); B: 2γb(h, φ)= c1φSphr(a1); C: 2γc(h, φ)= c1Sphr(a1φ )+
c2Sphr(a2φ); D: 2γd(h, φ)= c1φSphr (a1)+ c2φSphr(a2); E: 2γe(h, φ)= c1Sphr(a1φ )+
c2φSphr(a2φ ); F: 2γ f (h, φ)= c1φSphr(a1φ )+ c2φSphr(a2φ ).

has a very elongated range-ellipse at about 17◦, possibly indicating sill-anisotropy.
While not pronounced in this case, the crease in surface C is characteristic of the
elongated ellipse approach to modeling sill anisotropy.

Panel D shows the fitted surface for a two-structure model 2γd(h, φ)=
c1φSphr(a1)+ c2φSphr(a2), with both structures range-isotropic and sill-
anisotropic. Not only does this eight-parameter model have a larger residual sum
of squares compared to the eight-parameter model, C, the spike at 45◦ is unaccept-
able. Such spikes result from very elongatedcφ-ellipses much like the elongated
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Table 1. Parameter Estimates and Half-Widths of the 68.3% Confidence Intervals About the
Estimates for Variogram Surfaces Fitted to the Experimental Elevation Variogram Values

Model Parameter Estimate Half-width

A: 2γa(h, φ) = c1Sphr(a1φ): σ 2 = 3.477
amax 1 15,559.9 1124.0
amin 1 11,633.9 893.8
θa1 39.3 2.0
c1 4104.7 267.7

B: 2γb(h, φ) = c1φSphr(a1): σ 2 = 3.273
a1 12,097.6 745.3
cmax 1 4371.7 235.7
cmin 1 3320.1 176.9
θc1 130.5 1.8

C: 2γc(h, φ) = c1Sphr(a1φ) + c2Sphr(a2φ): σ 2 = 3.156
amax 1 1.10e + 06 26,640.0
amin 1 23,041.5 9.4e + 06
θa1 16.8 2.1
c1 3025.5 3187.0
amax 2 14,673.2 1476.0
amin 2 9022.6 561.8
θa2 83.4 4.2
c2 2534.1 189.5

D: 2γd (h, φ) = c1φSphr(a1) + c2φSphr(a2): σ 2 = 3.214
a1 12,638.2 899.3
cmax 1 4576.3 288.6
cmin 1 3411.4 242.5
θc1 130.6 1.8
a2 21748.7 203,500.0
cmax 2 7767.9 1.55e + 09
cmin 2 1.8 60.5
θc2 45.2 204.3

E: 2γe(h, φ) = c1Sphr(a1φ) + c2φSphr(a2φ): σ 2 = 2.921
amax 1 226,714 376,800.0
amin 1 13,275.4 1847.0
θa1 30.5 2.5
c1 4225.6 522.9
amax 2 35,320.7 2.716e + 4
amin 2 7465.3 451.0
θa2 100.0 4.2
cmax 2 2311.5 302.6
cmin 2 647.7 62.9
θc2 35.0 3.0

F: 2γ f (h, φ) = c1φSphr(a1φ) + c2φSphr(a2φ): σ 2 = 2.877
amax 1 228,799.0 7.41e + 5
amin 1 14,530.2 2695.0
θa1 29.4 4.2
cmax 1 6038.9 1390.0
cmin 1 4444.1 706.5
θc1 27.2 12.91
amax 2 27,304.6 2.88e + 4
amin 2 6669.7 932.5
θa2 88.3 6.6
cmax 2 2276.5 798.4
cmin 2 476.2 131.3
θc2 34.7 4.6

698
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aφ-ellipses produce creases in variogram surfaces. In the case of the elevation
data, it resulted from the fact that the experimental variograms in directions
45◦ and 60◦ were both slightly above the first variogram structure. Other starting
values used for 2γd(h, φ) resulted in local minima having shapes very similar to
Figure 7B. The estimated parameters for the second structure of these models
were not significantly different from zero, indicating that 2γb(h, φ) is preferred
over 2γd(h, φ).

To further investigate the flexibility of using the ellipse-approach to variogram
surface modeling, both the sill and the range parameters were allowed to vary
along ellipses. The two-structure model 2γe(h, φ)= c1Sphr(a1φ)+ c2φSphr(a2φ)
(panel E) was fitted. This is a ten-parameter model having an elongated range-
ellipse in directionθa2= 30◦, as evidenced by the surface crease in this direction.
The twelve-parameter model, 2γ f (h, φ)= c1φSphr(a1φ)+ c2φSphr(a2φ) (panel F)
was also fitted. It, too, has an elongated range-ellipse in directionθa1= 30◦. With
the exception of the maximum range of the elongated ellipses, all parameters in
both of these models are significantly different from zero. The lack of significance
of the maximum range is typical of elongated ellipses. Since the maximum range
occurs well beyond the maximum lag in the data, it is difficult, at best, to tie down.
Indeed, if it is really assumed to approach infinity, then it would be impossible
to estimate. It is, however, needed in the model in order to define an anisotropy
ellipse.

Model 2γe(h, φ) identified significant anisotropies in directionsθa1= 30◦,
θa2= 100◦, θc2= 35◦. Those at 30◦ and 100◦ are generally consistent with the
directions that werea priori expected based on theVARIOWIN surface (Fig. 6). In
particular, they identify the axesd1 andd4 of the central rhombus comprised of
variogram values near 2000. The maximum sill at 35◦ is harder to explain based
on theVARIOWIN surface plot. From the variogram surface plot (Fig. 7E) it is
clearly the direction at which the surface levels out after the dip centered at about
30◦. Some fitted equations hinted at anisotropies at about 70◦ (d3) and at about
85◦ (d2⊥). These directions were not identified by the fitted Model E nor was the
central ellipse (Fig. 6) having variogram values near 1000.

Some authors, e.g., Isaaks and Srivastava (1989), have argued against over-
fitting the variogram models. Because Kriging depends so heavily on the variogram
model assumed, we disagree to the extent that the amount of data used to compute
the experimental variogram values is sufficient. In the case of the elevation data,
even at the largest lags there were approximately 250 pairs of points used to
compute the experimental values. In our case, the maximum size of the Kriging
windows that were used was about 4000 m. With the exception of 2γd(h, φ),
all of the above models are acceptable for this size of window. Model 2γe(h, φ)
has the about the same residual variance as the full model and a slightly lower
approximate Akaike Information Criteria value; it would be preferred for kriging
windows approaching 8000 m in radius.
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SUMMARY AND CONCLUSIONS

We have attempted to demystify the computations required for sill and range
anisotropic variogram models. In so doing, we have provided the equations nec-
essary to model any parameter, not just the range, as directionally varying on an
ellipse. We have noted that, while not “incorrect,” they are after all models, some
published models do not coincide with the verbiage used to describe them. At least
some implementations of the power model confound the computation of the slope
parameter with that of the power parameter. The slope parameter computed using
commonly available software for power models does not vary along an ellipse. Fi-
nally, if sampling is dense enough, we advocate calculating experimental variogram
values for more than four directions and using weighted nonlinear regression or
some other, related technique (e.g., Cressie, 1985; McBratney and Webster, 1986;
Vecchia, 1988), for model fitting and displaying the fitted surface together with
the experimental variogram values in as many directions as is reasonable.
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