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Co-kriging

Suppose that at each spatial location si, i = 1, . . . , n we observe k variables as follows:

Z1(s1) Z1(s2) . . . Z1(sn)
Z2(s1) Z2(s2) . . . Z2(sn)

... . . . . . .
...

... . . . . . .
...

Zk(s1) Zk(s2) . . . Zk(sn)

We want to predict Z1(s0), i.e. the value of variable Z1 at location s0.

This situation that the variable under consideration (the target variable) occurs with other vari-
ables (co-located variables) arises many times in practice and we want to explore the possibility
of improving the prediction of variable Z1 by taking into account the correlation of Z1 with these
other variables. For example, the prediction of lead can be improved if we also know the values of
zinc at each spatial location. The value of lead will be predicted by the observed values of lead but
also by the observed values of zinc.

The predictor assumption:

Ẑ1(s0) =
k∑

j=1

n∑
i=1

wjiZj(si)

= w11z1(s1) + w12z1(s2) + . . .+ w1nz1(sn)

+ w21z2(s1) + w22z2(s2) + . . .+ w2nz2(sn)

+
... +

... + +
...

+ wk1zk(s1) + wk2zk(s2) + . . .+ wknzk(sn)

We see that there are weights associated with variable Z1 but also with each one of the other
variables. We will examine ordinary co-kriging, which means that E(Zj(si)) = µj for all j and i.
In vector form:

E(Z(s)) =



E(Z1(s))

E(Z2(s))

...

...

E(Zk(s)


=



µ1

µ2

...

...

µk


= µ.
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We want the predictor Ẑ1(s0) to be unbiased, that is E
(
Ẑ1(s0)

)
= µ1:

E
(
Ẑ1(s0)

)
=

k∑
j=1

n∑
i=1

wjiE (Zj(si))

= w11E(z1(s1)) + w12E(z1(s2)) + . . .+ w1nE(z1(sn))

+ w21E(z2(s1)) + w22E(z2(s2)) + . . .+ w2nE(z2(sn))

+
... +

... + . . .+
...

+ wk1E(zk(s1)) + wk2E(zk(s2)) + . . .+ wknE(zk(sn))

=
n∑

i=1

w1iµ1 +
n∑

i=1

w2iµ2 + . . .+
n∑

i=1

wkiµk = µ1.

Therefore, we must have the following set of constraints:

n∑
i=1

w1i = 1

n∑
i=1

w2i = 0

...
...

...
n∑

i=1

wki = 0

As with the other forms of kriging, co-kriging minimizes the mean squared error of prediction
(MSE):

min σ2e = E[Z(s0)− Ẑ(s0)]
2

or

min σ2e = E

Z(s0)−
k∑

j=1

n∑
i=1

wjiZj(si)

2

subject to the constraints:

n∑
i=1

w1i = 1

n∑
i=1

w2i = 0

...
...

...
n∑

i=1

wki = 0
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For smplicity, lets assume k = 2, in other words, we observe variables Z1 and Z2 and we want to
predict Z1. Therefore,

min σ2e = E

[
Z(s0)−

n∑
i=1

w1iZ1(si)−
n∑

i=1

w2iZ2(si)

]2
Let’s add the following quantities: −µ1 + µ1 +

∑n
i=1w2iµ2:

min σ2e = E

[
Z(s0)−

n∑
i=1

w1iZ1(si)−
n∑

i=1

w2iZ2(si)− µ1 + µ1 +
n∑

i=1

w2iµ2

]2
or

min σ2e = E

[
(Z(s0)− µ1)−

n∑
i=1

w1i[Z1(si)− µ1]−
n∑

i=1

w2i[Z2(si)− µ2]
]2

We complete the square above to get:

[Z(s0)− µ1]2 − 2
n∑

i=1

w1i[Z1(s0)− µ1][Z1(si)− µ1]

− 2
n∑

i=1

w2i[Z1(s0)− µ1][Z2(si)− µ2]

+
n∑

i=1

n∑
j=1

w1iw1j [Z1(si)− µ1][Z1(sj)− µ1]

+
n∑

i=1

n∑
j=1

w2iw2j [Z2(si)− µ2][Z2(sj)− µ2]

+ 2

[
n∑

i=1

w1i[Z1(si)− µ1]
] [

n∑
i=1

w2i[Z2(si)− µ2]
]

It can be shown that the last term of the expression above is equal to:

2

[
n∑

i=1

w1i[Z1(si)− µ1]
] [

n∑
i=1

w2i[Z2(si)− µ2]
]

= 2
n∑

i=1

n∑
j=1

w1iw2j [Z1(si)− µ1][Z2(sj)− µ2]

Find now the expected value of the above expression:

min E [Z(s0)− µ1]2 − 2
n∑

i=1

w1iE[Z1(s0)− µ1][Z1(si)− µ1]

− 2
n∑

i=1

w2iE[Z1(s0)− µ1][Z2(si)− µ2]

+
n∑

i=1

n∑
j=1

w1iw1jE[Z1(si)− µ1][Z1(sj)− µ1]

+
n∑

i=1

n∑
j=1

w2iw2jE[Z2(si)− µ2][Z2(sj)− µ2]

+ 2
n∑

i=1

n∑
j=1

w1iw2jE[Z1(si)− µ1][Z2(sj)− µ2]
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Finally, with the Lagrange multipliers we get:

min σ21 − 2
n∑

i=1

w1iC[Z1(s0), Z1(si)]

− 2
n∑

i=1

w2iC[Z1(s0), Z2(si)]

+
n∑

i=1

n∑
j=1

w1iw1jC[Z1(si), Z1(sj)] (1)

+
n∑

i=1

n∑
j=1

w2iw2jC[Z2(si), Z2(sj)]

+ 2
n∑

i=1

n∑
j=1

w1iw2jC[Z1(si), Z2(sj)]

− 2λ1[
n∑

i=1

w1i − 1]− 2λ2[
n∑

i=1

w2i − 0]

The unknowns are the weights w11, . . . , w1n and w21, . . . , w2n and the two Lagrange multipliers λ1
and λ2. We take the derivatives with respect to these unknowns and set them equal to zero.

−2C[Z1(s0), Z1(si)] + 2

n∑
j=1

w1jC[Z1(si), Z1(sj)] + 2

n∑
j=1

w2jC[Z1(si), Z2(sj)]− 2λ1 = 0, i = 1, . . . n (2)

−2C[Z1(s0), Z2(si)] + 2

n∑
j=1

w2iC[Z2(si), Z2(sj)] + 2

n∑
j=1

w1jC[Z2(si), Z1(sj)]− 2λ2 = 0, i = 1, . . . n (3)

n∑
i=1

w1i = 1

n∑
i=1

w2i = 0

Note: for simplicity we will denote the covariances involving Z1 with C11, the covariances involving
Z2 with C22, and the cross-covariance between Z1 and Z2 with C12. For example,

σ21 ≡ C11(0)

C[Z1(s0), Z1(si)] ≡ C11(s0, si)

C[Z1(si), Z1(sj)] ≡ C11(si, sj)

C[Z1(si), Z2(sj)] ≡ C12(si, sj)

C[Z1(s0), Z2(si)] ≡ C12(s0, si)

C[Z2(si), Z2(sj)] ≡ C22(si, sj)

C[Z2(si), Z1(sj)] = C21(si, sj)

We get the following co-kriging system in matrix form:
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Variance of the predicted value:
We multiply equation (2) by w1i and equation (3) w2i and sum over i = 1, . . . , n. This is what we get:

−
n∑

i=1

w1iC11(s0, si) +

n∑
i=1

n∑
l=1

w1iw1lC11(si, sl) +

n∑
i=1

n∑
j=1

w1iw2jC12(si, sj)−
n∑

i=1

w1iλ1 = 0 (4)

−
n∑

i=1

w2iC12(s0, si) +

n∑
i=1

n∑
l=1

w2iw2lC22(si, sl) +

n∑
i=1

n∑
j=1

w1iw2jC12(si, sj)−
n∑

i=1

w2iλ2 = 0 = 0 (5)

To simplify the expression for the variance of the predicted value we substitute (4) and (5) into equation (1):

σ2(s0) = C11(0)−
n∑

i=1

w1iC11(s0, si)−
n∑

i=1

w2iC12(s0, si) + λ1

or

σ2(s0) = C11(0)−
2∑

k=1

n∑
i=1

wkiCki(s0, si) + λ1.

Other benefits of co-kriging:
Consider the situation where the target variable is under-sampled. In the figure below, we want to predict
Z(s0) from observed data at locations s1, s2, s3, s4, s5. However, the data available at these locations are:
Z1(s1), Z2(s1), Z2(s2), Z2(s3), Z2(s4), Z2(s5). The predictor will be:

Ẑ1(s0) = w11Z1(s1) +

5∑
i=1

w2iZ2(si)

with the constraints, w11 = 1,
∑5

i=1 w2i = 0.

●

● ●

●●

●

x

y

s1 s2

s3s4

s0

s5
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Co-kriging using gstat

We continue with the same data (Maas river data).

# Access the data:

a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/soil.txt",

header=T)

#Load the library:

library(gstat)

Some background:
A co-located variable used in co-kriging must be correlated with the target variable and therefore
have some predicting power. A simple way to choose a co-located variable is to compute the cor-
relations between the target variable and co-located variables. Besides the predicting power that
co-located variables may add to the kriging system, they may also be cheaper and faster to sample.

In our data set we will treat log lead as our target variable and we will use log zinc (together with
log lead) to make co-kriging predictions. Here is the plot of the two variables and their correlation:

> plot( log(a$zinc), log(a$lead), xlab="log(zinc)", ylab="log(lead)")
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> cor(log(a$zinc), log(a$lead))

[1] 0.967162

We observe high correlation between the two variables. This is not a surprise since activities
associated with lead pollution also produce zinc. In addition, zinc is transported in a similar way
with lead.
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We begin now the co-kriging procedure with gstat. First we create a gstat object including both
variables one at a time.

> g1 <- gstat(id="log_lead", formula = log(lead)~1, locations = ~x+y, data = a)

> g1 <- gstat(g1,id="log_zinc", formula = log(zinc)~1, locations = ~x+y, data = a)

Note: First we include the variable log lead to create a gstat object and then we append to it the
variable log zinc. We can now plot the variogram of the object g to get the following plot:

> plot(variogram(g1))
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We obtained variograms for each one of the two variables as well as the cross-variogram. First we
will fit a model variogram to the sample variogram of the target variable log lead. Here are the
commands and the plot:

> g <- gstat(id="log_lead", formula = log(lead)~1, locations = ~x+y, data = a)

> v.fit <- fit.variogram(variogram(g), vgm(0.5,"Sph",1000,0.1))

> plot(variogram(g),v.fit)
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We are ready now to fit a model variogram to all the sample variograms. We use the function
fit.lmc (linear model of co-regionalization) to fit a model variogram to the sample variogram
of the co-located variable and to the sample cross-variogram between the target and co-located
variables. We begin with the gstat object g1 that was created earlier:

> g1 <- gstat(id="log_lead", formula = log(lead)~1, locations = ~x+y, data = a)

> g1 <- gstat(g1,id="log_zinc", formula = log(zinc)~1, locations = ~x+y, data = a)

> vm <- variogram(g1)

> vm.fit <- fit.lmc(vm, g1, model=v.fit)

> plot(vm, vm.fit)

Here are the plots of the three fitted variograms:
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We create the grid for predictions and perform co-kriging. The function that performs co-kriging
in gstat is predict.gstat and its arguments in our example are vm.fit and grd.

> x.range <- as.integer(range(a[,1]))

> y.range <- as.integer(range(a[,2]))

> grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=50),

y=seq(from=y.range[1], to=y.range[2], by=50))

> ck <- predict.gstat(vm.fit, grd)

As always, the predictions are under ck$log lead.pred and the variances under ck$log lead.var.
The following commands will produce the corresponding raster maps.

> library(lattice)

> levelplot(ck$log_lead.pred~x+y, ck, aspect = "iso",

main = "ordinary co-kriging predictions")

> levelplot(ck$log_lead.var~x+y, ck, aspect = "iso",

main = "ordinary co-kriging variance")

Here are the co-kriging raster maps:

9



ordinary co−kriging predictions

x

y

330000

331000

332000

333000

179000 179500 180000 180500 181000

4.0

4.5

5.0

5.5

6.0

ordinary co−kriging variance

x

y

330000

331000

332000

333000

179000 179500 180000 180500 181000

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10



Or using the image function:

#Collapse the vector of the predicted values into a matrix:

qqq <- matrix(ck$log_lead.pred, length(seq(from=x.range[1], to=x.range[2],

by=50)), length(seq(from=y.range[1], to=y.range[2], by=50)))

#Construct the raster map of the predicted values:

> image(seq(from=x.range[1], to=x.range[2], by=50),

seq(from=y.range[1],to=y.range[2], by=50), qqq,

xlab="West to East",ylab="South to North", main="Raster map of the

predicted values")

#Collapse the vector of the variances into a matrix:

> qqq1 <- matrix(ck$log_lead.var, length(seq(from=x.range[1], to=x.range[2],

by=50)), length(seq(from=y.range[1], to=y.range[2], by=50)))

#Construct the raster map of the variances:

> image(seq(from=x.range[1], to=x.range[2], by=50),

seq(from=y.range[1],to=y.range[2], by=50), qqq1,

xlab="West to East",ylab="South to North", main="Raster map

of the variances")
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Co-kriging: Two colocated variables

#Cokriging with two co-located variable:

a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/

soil_complete.txt", header=TRUE)

library(gstat)

#Begin with the target variable log_lead:

g1 <- gstat(id="log_lead", formula = log(lead)~1, locations = ~x+y, data = a)

#Append log_zinc:

g1 <- gstat(g1,id="log_zinc", formula = log(zinc)~1, locations = ~x+y, data = a)

#Append log_copper:

g1 <- gstat(g1,id="log_copper", formula = log(copper)~1, locations = ~x+y, data = a)

plot(variogram(g1))
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#==================================================

#Use only target variable to model the variogram:

g <- gstat(id="log_lead", formula = log(lead)~1, locations = ~x+y, data = a)

#Plot the variogram of the target variable:

plot(variogram(g))
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#Fit a model to the sample variogram:

v.fit <- fit.variogram(variogram(g), vgm(0.5,"Sph",1000,0.1))

#Plot the model variogram:

plot(variogram(g),v.fit)
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#==================================================

#Now go back the gstat object with the three variables (target variable and two

co-located variables):

#Fit a model variogram to all the variograms:

vm <- variogram(g1)

vm.fit <- fit.lmc(vm, g1, model=v.fit)

#Plot the fitted variograms to all the sample variograms:

plot(vm,vm.fit)
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#Cokriging predictions:

#Create the grid for predictions:

x.range <- as.integer(range(a[,1]))

y.range <- as.integer(range(a[,2]))

grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=50),

y=seq(from=y.range[1], to=y.range[2], by=50))

#Perform co-kriging predictions:

ck <- predict(vm.fit, grd)

#Plots:

#Collapse the predicted values into a matrix:

qqq <- matrix(ck$log_lead.pred,

length(seq(from=x.range[1], to=x.range[2], by=50)),

length(seq(from=y.range[1], to=y.range[2], by=50)))
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image(seq(from=x.range[1], to=x.range[2], by=50),

seq(from=y.range[1], to=y.range[2], by=50), qqq)
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#Add contours:

#Find first the range of the values:

range(ck$log_lead.pred)

contour(seq(from=x.range[1], to=x.range[2], by=50),

seq(from=y.range[1],to=y.range[2], by=50), qqq, add=TRUE, col="black",

levels=seq(3.6, 6.2, by=0.2), labcex=1)

points(a, pch=19)

179000 179500 180000 180500 181000

33
00

00
33

10
00

33
20

00
33

30
00

seq(from = x.range[1], to = x.range[2], by = 50)

se
q(

fr
om

 =
 y

.r
an

ge
[1

], 
to

 =
 y

.r
an

ge
[2

], 
by

 =
 5

0)

 3.8 

 4 

 4 

 4.2 

 4.2 

 4.4 

 4.4 

 4.6 

 4.8 

 4.8 

 5  5 

 5 

 5.2 

 5.2 

 5.2 

 5.2 
 5.4 

 5.4 

 5.4 

 5.4 

 5.4 

 5.6 

 5.6 

 5.6 

 5.8 

 5.8 

 6 

●
● ●

●

●
●

●●

●
●

●
●

●
●

●
●

●

●

●

● ● ●
●

●

●
●●

●
●

●

●
●

●
●
●●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●
●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

● ●

●

●
●

●●
●

●

●

●

●●
●

●

15


