University of California, Los Angeles Department of Statistics

Statistics C173/C273

Instructor: Nicolas Christou

Homework 9

Exercise 1

Access the Maas river data at:

- - a. Perform cokriging predictions on a grid (use by=50), using log(lead) as the target variable and co-located variables log(cadmium), log(copper), and log(zinc).
 - b. Use cross-validation to compare ordinary kriging with cokriging of question (a). Note: Cross-validation for ordinary kriging can be done with the krige.cv function, while cross-validation for cokriging can be done using the gstat.cv function.

Exercise 2

Read the following data in R:

a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/jura.txt", header=TRUE)

Use log(Pb) as the target variable. Answer the following questions:

- a. Create a gstat object using the target variable. Compute the sample omnidirectional variogram and fit a model to it.
- b. Create a dense grid for kriging predictions (use by=0.05).
- c. Construct the raster map using the back-transformed values $\check{Z}(s_0)$. Note: See handout #58.
- d. Assign NA values to the region outside the observed points. Finally add contours to the map. Note: See handout #58.

Exercise 3

Consider the data shown on the rectangle of the previous page. Our goal is to estimate the average of the variable Z(s) of the rectangle ABCD. The rectangle is descritized by the points a,b,c,d,e,f, and the observed data points are $z(s_1), z(s_2), z(s_3), z(s_4), z(s_5)$ (see the coordinates and figure below). Assume that the process Z is second order stationary with variogram function:

$$\gamma(h) = \begin{cases} 0 & h = 0\\ 3(1 - e^{-\frac{h}{5}}) & h > 0 \end{cases}$$

- a. Write the system of the kriging equations in terms of the variogram that will give you the weights for the estimation of the average of the rectangle ABCD. Explain what each part of the equations represent.
- b. Compute the covariance between the observed data point s_1 and point **a** of the rectangle ABCD.
- c. Write the expression that computes the covariance between the observed data point s_1 and the average of the rectangle ABCD.

Coordinates of the observed data points s_1, s_2, s_3, s_4, s_5 and the points a, b, c, d, e, f:

	8 -					
	6 -		A	S3 o		
y	8 -	S2 o	с• b• а•	• d • e • f		
	8 -		D	С	S4 0	
	- 10	S1 0		S5 o		
	° -					
	0	2		4	6	
				x		
F	Point	x	y	- ×		
F	Point	x 1.0	<i>y</i> 10	- -		
I s	Point	$\begin{array}{c} x \\ 1.0 \\ 2.0 \end{array}$	y 10 30	-		
F s s	Point 1 2 3	x 1.0 2.0 5.0	$\begin{array}{c} y\\10\\30\\40\end{array}$	- -		
I s s s	Point 1 2 3 4	$ x \\ 1.0 \\ 2.0 \\ 5.0 \\ 6.0 $	$egin{array}{c} y \\ 10 \\ 30 \\ 40 \\ 20 \end{array}$	x - -		
I s s s s	Point 122 33 44 55	$ x \\ 1.0 \\ 2.0 \\ 5.0 \\ 6.0 \\ 4.0 $	$egin{array}{c} y \\ 10 \\ 30 \\ 40 \\ 20 \\ 12 \end{array}$	x - -		
F S S S S S S S S S	Point 1 2 3 4 5 5	$ x \\ 1.0 \\ 2.0 \\ 5.0 \\ 6.0 \\ 4.0 \\ 3.5 $	y 10 30 40 20 12 28	x - -		
H s s s s a b	Point 1 2 3 4 5 4	$\begin{array}{c} x \\ 1.0 \\ 2.0 \\ 5.0 \\ 6.0 \\ 4.0 \\ 3.5 \\ 3.5 \end{array}$	y 10 30 40 20 12 28 30	× - -		
F s s s s a b c	Point 11 12 13 14 15 14 15 15 16 17 17 17 17 17 17 17 17 17 17	$\begin{array}{c} x \\ 1.0 \\ 2.0 \\ 5.0 \\ 6.0 \\ 4.0 \\ 3.5 \\ 3.5 \\ 3.5 \\ 3.5 \end{array}$	$ y \\ 10 \\ 30 \\ 40 \\ 20 \\ 12 \\ 28 \\ 30 \\ 32 $	- -		
F S S S S S S S S S S S S S S S S S S S	Point 11 22 33 44 55 4 5 5 4	$\begin{array}{c} x \\ 1.0 \\ 2.0 \\ 5.0 \\ 6.0 \\ 4.0 \\ 3.5 \\ 3.5 \\ 3.5 \\ 4.0 \end{array}$	$\begin{array}{c} y \\ 10 \\ 30 \\ 40 \\ 20 \\ 12 \\ 28 \\ 30 \\ 32 \\ 28 \end{array}$	- -		
H s s s a b c a e	Point 1 2 3 4 4 5 5 5 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8	$\begin{array}{c} x \\ 1.0 \\ 2.0 \\ 5.0 \\ 6.0 \\ 4.0 \\ 3.5 \\ 3.5 \\ 3.5 \\ 4.0 \\ 4.0 \end{array}$	$\begin{array}{c} y \\ 10 \\ 30 \\ 40 \\ 20 \\ 12 \\ 28 \\ 30 \\ 32 \\ 28 \\ 30 \\ 30 \\ \end{array}$	- -		

Exercise 4 Consider the covariance function given by

$$C(h) = \begin{cases} c_1(1 - \frac{h}{\alpha}), & h \le \alpha \\ 0, & h > \alpha \end{cases}$$

Suppose we want to predict point s_0 at $s_0 = 0$ using points $s_1 = -\frac{\alpha}{2}$, $s_2 = \frac{\alpha}{2}$ and $s_3 = \frac{\alpha}{2} + \alpha f$, with $0 < f \le 1$. Note that when $\frac{1}{2} < f \le 1$, point s_3 is located beyond the range of s_0 .

Show that when $0 < f \leq \frac{1}{2}$ the ordinary kriging weights are $w_1 = \frac{2}{4-f}$, $w_2 = \frac{3-f}{4-f}$, and $w_3 = -\frac{1}{4-f}$. See handout #70 for the case when $\frac{1}{2} < f \leq 1$.