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Data with trend

• As we discussed earlier, if the intrinsic stationarity assumption holds, which implies

E(Z(s+ h)− Z(s)) = 0

and

V ar(Z(s+ h)− Z(s)) = 2γ(h)

we can write

Var(Z(s+ h)− Z(s)) = E(Z(s+ h)− Z(s))2

and therefore we can use the method of moments estimator for the variogram (also
called the classical estimator):

2γ̂(h) =
1

N(h)

∑
N(h)

(Z(si)− Z(sj))
2,

where the sum is over N(h) such that si − sj = h.

• But what if there is a tend in our data? For example, the values may increase from
north to south, or northeast to southwest, etc. We will have to take this into account
when computing the variogram. Why?

It can be shown that the formula for computing the sample variogram is also equal to:

2γ̂(h) =
1

N(h)

∑
N(h)

(Z(si)− Z(sj))
2 − µ̂2

diff

By assuming a constant mean (µdiff = 0) it is like adding a positive quantity to the
variogram. Adding a square term will result to a parabola, and therefore a parabolic
variogram is an indication of a presence of a trend in our data.
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• Example 1: The Wolfcamp aquifer data: See Cressie (1993, pp. 212−214).
The U.S. Department of Energy proposed (in the 1980s) a nuclear waste site to be
in Deaf Smith County in Texas (bordering New Mexico). The contamination of the
aquifer was a concern, and therefore the piezometric-head data were obtained at 85
locations by drilling a narrow pipe through the aquifer. The measures are in feet above
sea level. See figure below for the location:

The Texas panhandle:

Please access the data from:

> a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/
wolfcamp.txt", header=T)

> b <- as.geodata(a)
> points(b)

The data points:
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> var1 <- variog4(b)

> plot(var1)
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The parabolic shape of the sample variograms indicates that clearly there is a trend in
our data. See the 3D figure below. In order to construct this 3D graph we must load
the library(scatterplot3d).

> library(scatterplot3d)

> scatterplot3d(a$x,a$y,a$level, xlab="West to East",

ylab="South to North", zlab="Piezometric level")
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Similarly we can use the rgl library for more interactive plots:

> library(rgl)

> plot3d(a$x,a$y,a$level, xlab="West to East",

ylab="South to North", zlab="Piezometric level", size=3)

We should try to “detrend” the data by fitting a plane through them. We can fit
a linear surface to the data by regressing the data against the x and y coordinates.
Or, we can fit a quadratic or cubic surface. Once the surface is estimated we can
subtract the observed data from the predicted data and get the residuals. It is hoped
that the residuals do not show any trend. All these, can be done within the function
variog, but we can verify the results by running the regression of the data on the x, y
coordinates, obtaining the residuals, and using a new data frame with x, y, res.
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Using regression in R:

> q <- lm(a$level ~ a$x+a$y)

> c <- as.data.frame(cbind(a$x, a$y, q$res))

> names(c) <- c("x", "y", "res")

> d <- as.geodata(c)

Now we can compute the variogram on the de-trended residuals (using the geodata
object d).

> var1 <- variog(d)

Or, we can simply use the function variog on the initial geodata object b as follows:

> vario_detrend <- variog(b, trend="1st")

The argument 1st is used for fitting a linear surface. Similarly you can use 2nd for
second order polynomial on the coordinates. We can also use the argument trend to fit
a surface based on external variables. For example trend=∼x1+x2+x3, where x1, x2, x3

are any external variables.

Here is the new variogram plot after we have detrended our data:

> plot(vario_detrend)
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• Example 2: Southwest of England 1967 unemployment data.
For this data set the percentage of the total workforce unemployed in January, 1967,
(see Cliff and Ord (1973)) in the 37 employment areas in the southwest of England is
used (see figure below).

We first transform the unemployment rate using logarithms as shown below:
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Please access the data from:

> a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/
unemp_data.txt", header=T)

Convert the data frame into a geodata object and compute the sample variogram on
the 4 major directions. Use different values for uvec and comment on the shape of
the sample variograms. Fit a surface to the data, de-trend the residuals, and compute
again the variograms.
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Robust estimation of the variogram

Cressie and Hawkins (1980) proposed the following estimator for the variogram which is
robust to outliers compare to the classical estimator:

2γ̄(h) =

{
1

N(h)

∑
N(h) |Z(si)− Z(sj)|

1
2

}4

0.457+0.494
N(h)

where the sum is over N(h) such that si − sj = h.

To use this estimator in R we use the argument estimator.type as follows:

> variogram1 <- variog(b, estimator.type="modulus")

The above will compute the robust omnidirectional variogram for the data data var.txt.
Here it is:
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The classical omnidirectional variogram for the same data is shown below:
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