
University of California, Los Angeles
Department of Statistics

Statistics C173/C273 Instructor: Nicolas Christou

Ordinary kriging using geoR and gstat

In this document we will discuss kriging using the R packages geoR and gstat. We will use
the numerical example from last lecture. Here it is:

A simple example:
Consider the following data

si x y z(si)
s1 61 139 477
s2 63 140 696
s3 64 129 227
s4 68 128 646
s5 71 140 606
s6 73 141 791
s7 75 128 783
s0 65 137 ???

Our goal is to estimate the unknown value at location s0. Here is the x− y plot:
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For these data, let’s assume that we use the exponential semivariogram model with param-
eters c0 = 0, c1 = 10, α = 3.33.

γ(h) = c0 + c1(1− e−
h
α ) = 10(1− e−

h
3.33 ).

which is equivalent to the covariance function

C(h) =

{
c0 + c1, h = 0

c1e
− h
α , h > 0

⇒ C(h) =

{
10, h = 0

10e−
h

3.33 , h > 0

The predicted value at location s0 is equal to:

ẑ(s0) =
n∑

i=1

wiz(si) = 0.174(477) + · · ·+ 0.086(783) = 592.59.

And the variance:

σ2
e =

n∑
i=1

wiγ(si − s0) + λ = 0.174(7.384) + · · ·+ 0.086(9.823) + 0.906 = 8.96.

Kriging using geoR:
We will use now the geoR package to find the same result. First we read our data as a
geodata object:

> a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/

kriging_11.txt", header=TRUE)

> b <- as.geodata(a)

To predict the unknown value at locaton (x = 65, y = 137) we use the following:

> prediction <- ksline(b, cov.model="exp", cov.pars=c(10,3.33), nugget=0,

locations=c(65,137))

where,
b The geodata
cov.model The model we are using
cov.pars The parameters of the model (partial sill and range)
nugget The value of the nugget effect
locations The coordinates (x, y) of the points to be predicted

The object “prediction” contains among other things the predicted value at location x =
65, y = 137 and its variance. We can obtain them as follows:

> prediction$predict

[1] 592.7587

> prediction$krige.var

[1] 8.960294
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Suppose now we want to predict the value at many locations. The following commands will
produce a grid whose points will be estimated using kriging:

> x <- seq(61, 75, by=1)

> y <- seq(128,141, by=1)

> xv <- rep(x,14)

> yv <- rep(y, each=15)

> in_mat <- as.matrix(cbind(xv,yv))

Of course the matrix can be constructed also as follows:

> x.range <- as.integer(range(a[,1]))

> y.range <- as.integer(range(a[,2]))

> x=seq(from=x.range[1], to=x.range[2], by=1)

> y=seq(from=y.range[1], to=y.range[2], by=1)

> length(x)

> length(y)

> xv <- rep(x,length(y))

> yv <- rep(y, each=length(x))

> in_mat <- as.matrix(cbind(xv,yv))

> plot(in_mat)

This grid consists of 15× 14 = 210 points stored in the matrix in mat. The command that
predicts the value at each one of these points is the following:

> q <- ksline(b, cov.model="exp",cov.pars=c(10,3.33), nugget=0,

locations=in_mat)

ksline: kriging location: 1 out of 210

ksline: kriging location: 101 out of 210

ksline: kriging location: 201 out of 210

ksline: kriging location: 210 out of 210

Kriging performed using global neighbourhood

We can access the predicted values and their variances using q$predict and q$krige.var.
Here are the first 5 predicted values with their variances:

> cbind(q$predict[1:5], q$krige.var[1:5])

[,1] [,2]

[1,] 458.4491 9.245493

[2,] 413.2103 7.850838

[3,] 362.4674 5.927999

[4,] 338.9828 4.516906

[5,] 393.3933 5.280417
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To construct the raster map we type:

image(q, val=q$predict)

Or simply:

image(q)

Here is the plot:

65 70 75

12
8

13
0

13
2

13
4

13
6

13
8

14
0

X Coord

Y
 C

oo
rd

And here is the plot with the data points:

points(a)
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We can construct a raster map of the variances:

> image(q, val=q$krige.var)

Here is the plot:
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And also we can construct a raster map of the standard errors:

> image(q, val=sqrt(q$krige.var))

Here is the plot:
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The following command will construct a perspective plot of the predicted values:

> persp(x,y,matrix(q$predict,15,14), xlab="x coordinate",

ylab="y coordinate", zlab="Predicted values of z",

main="Perspective plot of the predicted values")
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Perspective plot of the predicted values

And here is the perspective plot of the standard errors:

> persp(x,y,matrix(sqrt(q$krige.var),15,14), xlab="x coordinate",

ylab="ycoordinate", zlab="Predicted values of z",

main="Perspective plot of the standard errors")

x coordinate

yc
oo

rd
in

at
e

P
redicted values of z

Perspective plot of the standard errors
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Commnets:
The argument locations for the function ksline can be a matrix or a data frame. So far
we use a matrix (in mat). We can also use a data frame as follows:

> x.range <- as.integer(range(a[,1]))

> y.range <- as.integer(range(a[,2]))

> grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=1),

y=seq(from=y.range[1], to=y.range[2], by=1))

> q <- ksline(b, cov.model="exp",cov.pars=c(10,3.33), nugget=0,

locations=grd)

Another function in geoR that performs kriging is the krige.conv function. It can be used
as follows:

> kc <- krige.conv(b, loc=in_mat,

krige=krige.control(cov.pars=c(10, 3.33), nugget=0))

krige.conv: model with constant mean

krige.conv: Kriging performed using global neighbourhood

Or using a data frame argument for locations:

> kc <- krige.conv(b, loc=grd,

krige=krige.control(cov.pars=c(10, 3.33), nugget=0))

krige.conv: model with constant mean

krige.conv: Kriging performed using global neighbourhood

In case you have a variofit output you can use it as an input of the argument krige as
follows (this is only an example):

var1 <- variog(b, max.dist=1000)

fit1 <- variofit(var1, cov.model="exp", ini.cov.pars=c(1000, 100),

fix.nugget=FALSE, nugget=250)

qq <- krige.conv(b, locations=grd, krige=krige.control(obj.model=fit1))
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Kriging using gstat:
We will use now the gstat package to find the same result. First we read our data and
create the grid for prediction as follows:

> a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/

kriging_11.txt", header=TRUE)

> x.range <- as.integer(range(a[,1]))

> y.range <- as.integer(range(a[,2]))

> grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=1),

y=seq(from=y.range[1], to=y.range[2], by=1))

We now define the model. Normally the model must be estimated from the sample variogram,
but for this simple example we assume that it is given as below:

> library(gstat)

> m <- vgm(10, "Exp", 3.33, 0)

There are two ways to perform ordinary kriging with gstat. The data and the grid are used
as data frames, with the extra argument locations as shown below:

> q1 <- krige(id="z", formula=z~1, data=a, newdata=grd, model = m,

locations=~x+y)

The other way is to convert the data and the grid as spatial data points data frame:

> coordinates(a) <- ~x+y

> coordinates(grd) <- ~x+y

> q2 <- krige(id="z", formula=z~1, a, newdata=grd, model = m)

Important note: If we use the second way the argument data= is not allowed. We simply use
the name of the data, here just a. Also, q1 is a data frame, while q2 is spatial data points
data frame. Using q1 we can create a 3D plot with the libraries scatterploted and rgl as
follows:

> library(scatterplot3d)

> library(rgl)

> scatterplot3d(q1$x, q1$y, q1$z.pred, xlab="x", ylab="y",

zlab="Predicted values")

> plot3d(q1$x, q1$y, q1$z.pred, size=3)
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Here are the plots:
(a). Using the scatterplot3d command.
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(b). Using the plot3d command.
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A complete example on kriging using gstat:
We will use again the soil data from the Maas river. Here is some background.
The actual data set contains many variables but here we will use the x, y coordinates and
the concentration of lead and zinc in ppm at each data point. The motivation for this study
is to predict the concentration of heavy metals around the banks of the Maas river in the
area west of the town Stein in the Netherlands. These heavy metals were accumulated over
the years because of river pollution. Here is the area of study:
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You can access the data at

> a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/

soil.txt", header=TRUE)

To load the gstat package type

> library(gstat)

First, we will compute the descriptive statistics of the data set, construct the stem-and-leaf
plots, histograms, and boxplots:

> stem(a$lead)

> boxplot(a$lead)

> hist(a$lead)

> stem(a$zinc)

> boxplot(a$zinc)

> hist(a$zinc)

> summary(a)

Transform the data (logarithm transformation):

> log_lead <- log10(a$lead)

> log_zinc <- log10(a$zinc)

> stem(log_lead)

> boxplot(log_lead)

> hist(log_lead)

> stem(log_zinc)

> boxplot(log_zinc)

> hist(log_zinc)

#Create a gstat object;

> g <- gstat(id="log_lead", formula = log(lead)~1, locations = ~x+y,

data = a)

#Plot the variogram:

> plot(variogram(g), main="Semivariogram of the log_lead")

#Fit a model variogram to the sample variogram:

> v.fit <- fit.variogram(variogram(g), vgm(0.5,"Sph",1000,0.1))

> plot(variogram(g),v.fit)

#Note: The values above were the initial values for the partial sill,

#range, and nugget. Then the function fit.variogram uses a minimization

#procedure to fit a model variogram to the sample variogram. Type v.fit

#to get the estimates of the model parameters.
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> v.fit

model psill range

1 Nug 0.05156252 0.0000

2 Sph 0.51530678 965.1506

#There are different weights you can use in the minimization procedure. The

#default (the one used above) is $N_h/h^2$ where $N_h$ is the number of pairs

#and $h$ the separation distance. You can chose the type of weights by using

#the argument fit.method=integer, where integer is a number from the table

#below:

fit.method weights

1 N_h

2 N_h/gamma(h;theta)^2 (Cressie’s weights)

6 OLS (no weights)

7 N_h/h^2 (default)

#Use kriging to estimate the value of log(lead) at the grid values.

#First we create the grid.

> x.range <- as.integer(range(a[,1]))

> x.range

> y.range <- as.integer(range(a[,2]))

> y.range

> grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=50),

y=seq(from=y.range[1], to=y.range[2], by=50))

#We want now to use kriging to predict log(lead) at each point on the grid:

> pr_ok <- krige(id="log_lead",log(lead)~1, locations=~x+y,

model=v.fit,

data=a, newdata=grd)

#To find what the object pr_ok contains type:

> names(pr_ok)

[1] "x" "y" "log_lead.pred" "log_lead.var"

#To see the predicted values you type:

> pr_ok$log_lead.pred

#And the kriging variances:

> pr_ok$log_lead.var
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The plot of the sample variogram:

> plot(variogram(g), main="Semivariogram of the log_lead")
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The fitted spherical variogram to the sample variogram:

> plot(variogram(g),v.fit)

Fitted spherical semivariogram
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Here is the grid for the kriging predictions:

> plot(grd)
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Grid for the kriging predictions
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Load the library scatterplot3d:

> library(scatterplot3d)

> scatterplot3d(pr_ok$x, pr_ok$y, pr_ok$log_lead.pred, main="Predicted values")

Predicted values
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Load the library lattice to use the levelplot function:

> library(lattice)

> levelplot(pr_ok$log_lead.pred~x+y,pr_ok, aspect ="iso",

main="Ordinary kriging predictions")

Ordinary kriging predictions
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> levelplot(pr_ok$log_lead.var~x+y,pr_ok, aspect ="iso",

main="Ordinary kriging variances")
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> levelplot(sqrt(pr_ok$log_lead.var)~x+y,pr_ok, aspect ="iso",

main="Ordinary kriging standard errors")

Ordinary kriging standard errors
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Use the image function:
We will use now the function image to construct similar graphs.

# Function to convert a vector to a matrix:

vec.2.Mx <- function( xvec, nrow, ncol ) {

Mx.out <- matrix(0, nrow, ncol )

for(j in 1:ncol) {

for(i in 1:nrow) {

Mx.out[i, j] <- xvec[ (j-1)*nrow + i ]

}

}

return( Mx.out )

}
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Now we can use the function to create a matrix (qqq below):

> qqq <- vec.2.Mx( pr_ok$log_lead.pred,

length(seq(from=x.range[1], to=x.range[2], by=50)),

length(seq(from=y.range[1], to=y.range[2], by=50)) )

Much easier the vector of the predicted values can be collapsed into a matrix with the matrix
function:

#Collapse the predicted values into a matrix:

qqq <- matrix(pr_ok$log_lead.pred,

length(seq(from=x.range[1], to=x.range[2], by=50)),

length(seq(from=y.range[1], to=y.range[2], by=50)))

And we can use the image function to create the raster map of the predicted values:

> image(seq(from=x.range[1], to=x.range[2], by=50),

seq(from=y.range[1], to=y.range[2], by=50), qqq,

xlab="West to East", ylab="South to North", main="Predicted values")

> points(a) #The data points can be plotted on the raster map.
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We can also create the raster map of the kriging variances:

> qqq <- vec.2.Mx( pr_ok$log_lead.var,

length(seq(from=x.range[1], to=x.range[2], by=50)),

length(seq(from=y.range[1], to=y.range[2], by=50)) )

> image(seq(from=x.range[1], to=x.range[2], by=50),

seq(from=y.range[1], to=y.range[2], by=50), qqq,

xlab="West to East", ylab="South to North", main="Kriging variances")
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And finally the raster map of the kriging standard errors:

> qqq <- vec.2.Mx( sqrt(pr_ok$log_lead.var),

length(seq(from=x.range[1], to=x.range[2], by=50)),

length(seq(from=y.range[1], to=y.range[2], by=50)) )

> image(seq(from=x.range[1], to=x.range[2], by=50),

seq(from=y.range[1], to=y.range[2], by=50), qqq,

xlab="West to East", ylab="South to North", main="Kriging standard errors")
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Exercise:
Repeat for log(zinc).
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