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Spatial prediction.
(An Introduction to Applied Geostatistics, by Edward Isaaks, Nohan Srivastava: New York, Oxford University Press (1990)

Applied Spatial Data Analysis with R, by Roger Bivand, Edzer Pebesma, Virgilio Gomez-Rubio: Springer (2008))

• Spatial prediction:

a. One of the goals of geostatistics is to predict values at unsampled loacations. This
will create a “raster map” of the area under consideration.

b. Idea: The value at an unsampled location is related to the values at sampled
locations. If not, then the predicted value can be simply the average of the
sampled locations.

c. There is a relationship between the point being estimated and the samples around
it based on its location and the distance between the points.

d. Different methods for spatial prediction. All methods assume that nearby samples
are more important (they have more weight) in predicting the unknown value.

• Some simple methods of spatial prediction:

1. Method of polygons.

2. Triangulation.

3. Weighted average based on triangulation.

4. Inverse distance method.

A. Method of polygons:
Very simple. The point being predicted is equal to the nearest observed sampled data
point.
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B. Triangulation
Form a triangle around the point being estimated with three observed data points. For
these three data points we know their x, y coordinates and the value z of the variable
of interest as follows:

x y z
x1 y1 z1
x2 y2 z2
x3 y3 z3

We use these points to find the equation of a plane by solving the system of equations:

ax1 + by1 + c = z1

ax2 + by2 + c = z2

ax3 + by3 + c = z3

Suppose now we want to find the value of z0 at location given by the coordinates
(x0, y0) of a point within the triangle.

Example:
Predict the value at (65, 137) if the surrounding three points are: z1 = 696 at (63,
140), z2 = 227 at (64, 129), and z3 = 606 at (71, 140).
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C. Weighted average based on triangulation:
Suppose we want to predict the value at point O based on the values zA, zB, zC from
the figure below:

A weighted average is used as follows:

ẑO = zA × Area(OBC)

Area(ABC)
+ zB × Area(OCA)

Area(ABC)
+ zC × Area(OAB)

Area(ABC)

This method gives more weight to the data point closer to the point being estimated.
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D. Inverse distance method:
Suppose we want to predict data point • from the observed points ◦ as shown in the
figure below:

Each observed data point has an impact on the point being predicted with the clos-
est points having larger impact. We can consider as a predictor the following linear
combination (weighted average):

ẑ(s0) = w1z1 + w2z2 + · · · + wnzn =
n∑

i=1

wizi

The weights wi, i = 1, · · · , n are inversely related to the distance of point i to the point
being predicted. For example, wi = 1

di
. This makes sense since we give more weight

to the closest data points. Of course other functions can be used, such as, 1
d2i

, 1
d3i

, 1√
di

,

e−di , etc.

Example:
Suppose we want to predict point zo from 12 surrounding points with distances and
values as follows:

di 150 145 153 100 120 125 130 135 136 110 115 103
zi 40 37 44 42 50 55 38 41 39 47 51 58

The distances are in feet and the values of z are in %.
What is the problem here?
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We need to generate weights that are unit-free numbers. One way to do this is to divide
each weight with the sum of the weights. The inverse distance weighted predictor is
equal to:

ẑ =

∑n
i=1wizi∑n
i=1 wi

= z1
w1∑n
i=1wi

+ z2
w2∑n
i=1wi

+ · · · + zn
wn∑n
i=1wi

.

where, wi = 1
di

. The sum of the new weights is equal to 1, and this will make the
predictor unbiased.

A more general expression is the following based on some power we choose for the
inverse distance:

ẑ(s0) =

∑n
i=1w

p
i z(si)∑n

i=1w
p
i

= z1
wp

1∑n
i=1w

p
i

+ z2
wp

2∑n
i=1w

p
i

+ · · · + zn
wp

n∑n
i=1w

p
i

.

where, wp
i = 1

dpi
.

If p is large then only the points closer to the point being estimated are important. If
p = 0 then ẑ = z̄. The default value for p in gstat is p = 2. With the method of
inverse distance the weights are guaranteed to be between 0 and 1.

Example using R:

# Read the data:

a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/

wolfcamp.txt", header=TRUE)

# Load the gstat library:

library(gstat)

# Create the grid:

x.range <- as.integer(range(a[,1]))

x.range

y.range <- as.integer(range(a[,2]))

y.range

grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=2),

y=seq(from=y.range[1], to=y.range[2], by=2))

coordinates(grd) <- ~ x+y

# Plot the grid (see figure below):

plot(grd)

# Plot the observed data on the grid (see figure below):

points(a)
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#Predict data points on the grid:

idw.out <- idw(level~1, locations=~x+y, a, grd)

Here is the grid:

plot(grd)

Here is the grid with the data points:

points(a)
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Here is the plot of the predicted values:

# Plot the raster map (see figure below):

spplot(idw.out)

#Use different color patterns:

spplot(idw.out, col.regions=heat.colors(4))

The var1.var window above is empty because the inverse distance weighted method does
not provide the variance of the predicted values.
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Plot of the predicted values using the image function:
Another way to plot the predicted values is by using the image function.
Important note: Before you use the gstat library you must save the original image function.
You can do for example the following:

image.orig <- image

This is necessary because gstat has its own image function which does not work the same
way as the graphics image function.

First, we need to collapse the vector of the predicted values (idw.out) and form a matrix.
This is needed because the image function requires a matrix input. The following function
will do it for us.

vec.2.Mx <- function( xvec, nrow, ncol ) {

Mx.out <- matrix(0, nrow, ncol )

for(j in 1:ncol) {

for(i in 1:nrow) {

Mx.out[i, j] <- xvec[ (j-1)*nrow + i ]

}

}

return( Mx.out )

}

Now you can use the function to create a matrix (qqq below):

> qqq <- vec.2.Mx( idw.out$var1.pred,

length(seq(from=x.range[1], to=x.range[2], by=2)),

length(seq(from=y.range[1], to=y.range[2], by=2)) )

And you can use the original image function to create the raster map (see figure on page
10):

> image.orig(seq(from=x.range[1], to=x.range[2], by=2),

seq(from=y.range[1], to=y.range[2], by=2), qqq,

xlab="West to East", ylab="South to North")

The color of the resulting image can be changed using the argument col with options:
- rainbow(n)
- heat.colors(n)
- topo.colors(n)
- terrain.colors(n)
where, n is the number of colors.
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Much easier the vector of the predicted values can be collapsed into a matrix with the matrix
function:

#Collapse the predicted values into a matrix:

qqq <- matrix(idw.out$var1.pred,

length(seq(from=x.range[1], to=x.range[2], by=2)),

length(seq(from=y.range[1], to=y.range[2], by=2)))

Using col=rainbow(5):

image.orig(seq(from=x.range[1], to=x.range[2], by=2),

seq(from=y.range[1], to=y.range[2], by=2), qqq,

xlab="West to East", ylab="South to North",

col=rainbow(5))
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This is what we get in our example (see commands on page 8):
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In case we want the observed points to be plotted on the previous raster map we can simply
use the points function as follows:

points(a)
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Another type of graph:

persp(seq(from=x.range[1], to=x.range[2], by=2),

seq(from=y.range[1], to=y.range[2], by=2), qqq,

xlab="West to East", ylab="South to North")
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Exercise:
Access the data from the Maas river at:

a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/

soil.txt", header=T)

a. Create a grid (use by=50).

b. Use the idw function of gstat to predict the value of the logarithm of lead at every
point of the grid.

c. Plot the predicted values and create a raster map using the spplot function.

d. Collapse the vector of the predicted values into a matrix and then use the image

function to repeat question (c).
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Linear Regression:
For spatial prediction we can use the function krige of the gstat library as follows:

> a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/

wolfcamp.txt", header=T)

# Load the gstat library:

> library(gstat)

# Create the grid:

> x.range <- as.integer(range(a[,1]))

> x.range

> y.range <- as.integer(range(a[,2]))

> y.range

> grd <- expand.grid(x=seq(from=x.range[1], to=x.range[2], by=2),

y=seq(from=y.range[1], to=y.range[2], by=2))

> coordinates(grd) <- ~ x+y

#Predict the value at the grid points:

> q1 <- krige(formula=level~x+y, locations=~x+y, a, grd)

> names(q1)

[1] "var1.pred" "var1.var"

Note: The id="level" is useful. Here is what you get:

> q1 <- krige(id="level", formula=level~x+y, locations=~x+y, a, grd)

> names(q1)

[1] "level.pred" "level.var"

To display the predicted values you can type q1$level.pred.

Alternatively, the lm function can be used:

> q1.r <- lm(level ~ x+y, data=a)

> q1.r_pred <- predict(q1.r, se.fit=TRUE, grd)

> names(q1.r_pred)

[1] "fit" "se.fit" "df" "residual.scale"

To display the fitted values you can type q1.r pred$fit.
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Fitting a polynomial of spatial coordinates:
We can also use a second order polynomial of the coordinates as follows:

> q2 <- krige(id="level", formula=level~1, locations=~x+y, a, newdata=grd,

degree=2)

With the argument degree=2 we run a regression on x + y + x2 + y2 + xy.

The same result can be obtained using the lm function:

> q2.r <- lm(level ~ x+y+I(x^2)+I(y^2)+I(x*y), a)

> q2.r_pred <- predict(q2.r, se.fit=TRUE, grd)

Questions that need to be addressed:

1. What function of distance should we use? We can use 1
di

, 1
d2i

, etc.

2. How do we take into account different continuity in different directions? This is called
anisotropy.

3. How many of the observed data points should we use in predicting a new point? Is it,
“the more points we use the better estimate we get”?

4. How do we handle clusters of data points or highly irregular spaced data points?

5. How far should we go to include data points? Note: This is not the same as 3 above.

6. Can we produce confidence intervals for the predictor assuming normality?

7. What happens when we have non-normal data?

8. Why are predictions smooth?

9. What happens if there is a strong trend in the data?

10. How do we estimate areas and volumes? For example, in mining we want to estimate
the ore deposit.
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