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Variograms - summary

Variograms can be classified based on their behavior at infinity and the origin.

a. Behavior at infinity:

1. Bounded.

2. Unbounded.

a. Behavior at the origin:

1. Linear.

2. Quadratic.

3. Discontinuous.

Basic permissible variogram models

a. Power function
γ(h) = αhω, with 0 < ω < 2.
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b. Exponential

γ(h;θ) =

{
0 h = 0
c0 + c1(1− exp(− h

α
)) h 6= 0

θ = (c0, c1, α)′, where c0 ≥ 0, c1 ≥ 0, and α ≥ 0.

The exponential semivariogram function approaches its sill asymptotically and there-
fore its range is not finite. For practical purposes, a practical range is used which is
equal to the distance at which the semivariogram is equal to 95% of the sill.
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c. Spherical

γ(h;θ) =


0 h = 0
c0 + c1(

3
2
( h
α

)− 1
2
( h
α

)3) 0 < h ≤ α
c0 + c1 h ≥ α

θ = (c0, c1, α)′, where c0 ≥ 0, c1 ≥ 0, and α ≥ 0.

The spherical semivariogram has an actual range equal to α. If h ≥ α then γ(h) =
c0 + c1. It must be“forced” to equal c0 + c1 when h ≥ α - see next plots.
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d. Gaussian

γ(h;θ) =

{
0 h = 0

c0 + c1(1− exp(− h2

α2 )) h 6= 0

θ = (c0, c1, α)′, where c0 ≥ 0, c1 ≥ 0, and α ≥ 0.

The Gaussian semivariogram approaches its sill asymptotically. A practical range is
used which is equal to the distance at which the semivariogram is equal to 95% of the
sill.
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A modified function can be used with an extra parameter ω replacing the exponent 2
in the Gaussian model:

γ(h;θ) =

{
0 h = 0
c0 + c1(1− exp(− hω

αω )) h 6= 0

e. Matérn function
Very flexible function, but complicate! It is a general form of few of the models dis-
cussed above.

γ(h;θ) = c0 + c1

[
1− 1

2ν−1Γ(ν)

(
h

α

)ν
Kν

(
h

α

)]

Γ is the gamma function, and K is the Bessel function.

f. Pure nugget effect model
γ(h) = c0, for h > 0.
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