# University of California, Los Angeles Department of Statistics

## Statistics C173/C273

### Instructor: Nicolas Christou

## Variograms - summary

Variograms can be classified based on their behavior at infinity and the origin.

- a. Behavior at infinity:
  - 1. Bounded.
  - 2. Unbounded.
- a. Behavior at the origin:
  - 1. Linear.
  - 2. Quadratic.
  - 3. Discontinuous.

### Basic permissible variogram models

a. Power function

 $\gamma(h)=\alpha h^{\omega},\, {\rm with}\,\, 0<\omega<2.$ 

#### Power semivariogram



### b. Exponential

$$\gamma(h; \boldsymbol{\theta}) = \begin{cases} 0 & h = 0\\ c_0 + c_1(1 - exp(-\frac{h}{\alpha})) & h \neq 0 \end{cases}$$

$$\boldsymbol{\theta} = (c_0, c_1, \alpha)', \text{ where } c_0 \ge 0, \ c_1 \ge 0, \text{ and } \alpha \ge 0.$$

The exponential semivariogram function approaches its sill asymptotically and therefore its range is not finite. For practical purposes, a practical range is used which is equal to the distance at which the semivariogram is equal to 95% of the sill.



**Exponential semivariogram** 

# c. Spherical

$$\gamma(h; \boldsymbol{\theta}) = \begin{cases} 0 & h = 0\\ c_0 + c_1(\frac{3}{2}(\frac{h}{\alpha}) - \frac{1}{2}(\frac{h}{\alpha})^3) & 0 < h \le \alpha\\ c_0 + c_1 & h \ge \alpha \end{cases}$$

$$\boldsymbol{\theta} = (c_0, c_1, \alpha)'$$
, where  $c_0 \ge 0$ ,  $c_1 \ge 0$ , and  $\alpha \ge 0$ .

The spherical semivariogram has an actual range equal to  $\alpha$ . If  $h \ge \alpha$  then  $\gamma(h) = c_0 + c_1$ . It must be "forced" to equal  $c_0 + c_1$  when  $h \ge \alpha$  - see next plots.



Spherical function – range?

### d. Gaussian

$$\gamma(h; \boldsymbol{\theta}) = \begin{cases} 0 & h = 0\\ c_0 + c_1(1 - exp(-\frac{h^2}{\alpha^2})) & h \neq 0 \end{cases}$$
$$\boldsymbol{\theta} = (c_0, c_1, \alpha)', \text{ where } c_0 \ge 0, \ c_1 \ge 0, \text{ and } \alpha \ge 0 \end{cases}$$

The Gaussian semivariogram approaches its sill asymptotically. A practical range is used which is equal to the distance at which the semivariogram is equal to 95% of the sill.



A modified function can be used with an extra parameter  $\omega$  replacing the exponent 2 in the Gaussian model:

$$\gamma(h; \boldsymbol{\theta}) = \begin{cases} 0 & h = 0\\ c_0 + c_1(1 - exp(-\frac{h^{\omega}}{\alpha^{\omega}})) & h \neq 0 \end{cases}$$

#### e. Matérn function

Very flexible function, but complicate! It is a general form of few of the models discussed above.

$$\gamma(h; \boldsymbol{\theta}) = c_0 + c_1 \left[ 1 - \frac{1}{2^{\nu - 1} \Gamma(\nu)} \left( \frac{h}{\alpha} \right)^{\nu} K_{\nu} \left( \frac{h}{\alpha} \right) \right]$$

 $\Gamma$  is the gamma function, and K is the Bessel function.

f. Pure nugget effect model  $\gamma(h) = c_0$ , for h > 0.