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Kriging Without Negative Weights 

F .  S z i d a r o v s z k y ,  2 E .  Y .  Baaf i ,  3 a n d  Y .  C.  Kirn 4 

Under a constant drift, the linear kriging estimator is considered as a weighted average of  n 
available sample values. Kriging weights are determined such that the estimator is unbiased and 
optimal. To meet these requirements, negative kriging weights are sometimes found. Use of  neg- 
ative weights can produce negative block grades, which makes no practical sense. In some appli- 
cations, all kriging weights may be required to be nonnegative. In this paper, a derivation of  a set 
of  nonlinear equations with the nonnegative constraint is presented. A numerical algorithm also is 
developed for the solution of  the new set of  kriging equations, 

KEY WORDS: nonnegative kriging weights, kriging equations, nonlinear optimization, numer- 
ical algorithm. 

INTRODUCTION 

In linear kriging, the estimation of an average grade of a block Z ( V )  is consid- 
ered as a weighted average of n available sample values Z ( x i  ), i = 1, 2 . . . . .  

n, i .e.  

z*(v) : Z xiz(xi) (1) 
i= l  

Weights Xz (i = 1, 2, . . .  , n) usually are determined such that the kriging 
estimator is unbiased and optimal (i.e., with minimal mean squared error). The 
unbiasedness condition is equivalent to 

n 

Z xi : 1 (2) 
i=1 
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where 

The mean squared error expressed in terms of the variogram function 3' is 

- -  = - -3"vv  "}- 2 ~]J ~ i '~v i  - -  ~ki ~ 3"ij ( 3 )  
i = 1  i = l j = l  

"Yij = .y(x, - xj ) 

1 f 3 " ( x - x i ) d x  
3'vi = V v 

1 f f  
• 

VV 

The kriging estimator is described commonly as "opt imal"  because it has 
minimal estimation variance (i.e., minimal mean squared error) given in Eq. 
(3). 

Minimization of function (3) under constraint (2) is equivalent to the so- 
lution of the linear equations 

!IF! 1 21 (4) 

The weights obtained by solution of these equations are not necessarily 
nonnegative. Under some conditions, the weights may be required to be non- 
negative (Baafi et al., 1986). In such cases, the additional nonnegativity con- 
straints of 

~k i ~ 0 (i = 1, 2 . . . . .  n) (5) 

must be considered and included in the optimization process (Schapp and 
George, 1981; Barnes and Johnson, 1984). Because any nonnegative number 
can be rewritten as a square of a real number, this extended optimization prob- 
lem can be rewritten as 

n n n 

minimize - Yvv + 2 ~ a~ 3"vi - -  Z ~]~ aieaj2 3"ij 
i = 1  i = l j = l  

subject to k a / 2 -  1 = 0 (6) 
i = 1  

By use of the Lagrange method, this constrained optimization problem can 
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be reformulated as an unconstrained minimization of the Lagrangian defined as 

n 

L ( a l  . . . . .  an, Ix) = - ~ v v  + 2 2 a~3'vi 
i = I  

17 n 

2 2  
-- a i aj  3'ij 

i = l j = l  

--2/Z(i=~ 1 a 2 -  1 )  (7) 

Thus, the first-order necessary conditions are 

( ) Oa i 4ai 3% j=l~ a)'yij tx 0 (i 1, 2 . . . .  n)  (8 )  

0-~ = - 2  i= , a~  - 1 = 0 (9) 

Consider Eq. (8). If a i 4= 0, then necessarily 

n 

2 a23,ij "Jr Ix = 7vi (10) 
j=l  

that is, the ith equation of the original kriging system (4) must be satisfied. If 
a i = 0 ,  the ith equation of Eq. (8) is obviously true. Equation (9) is equivalent 
to the original condition (2), because a ~ = ks. 

Summarizing the above observations, we obtain the following formulation. 

Let X*, X* . . . . .  X* be the optimal nonnegative weights from solving Eqs. (8) 

and (9), and let X* X* I I  . . . .  ' ir denote the strictly positive weights among them 

where r _< n. For weights X* ( j  --/: il . . . . .  i r )  , Eq. (8) above is satisfied 

because coefficients X* ( j  :# il . . . . .  it) are zeros. For the strictly positive 

weights X* X* ~ . . . . .  it, Eq. (4) of the original kriging system also is satisfied. 
These positive weights can be obtained by using the original kriging method 
for sample points xi, . . . . .  xir. 

This important observation is the theoretical basis of a numerical method 
for finding optimal nonnegative weights. Details of the method are discussed 
in the next section. 

n} .  

THE NUMERICAL ALGORITHM 

Results of the previous section suggest the following method: 
Step 1. Generate all possible subsets { i l . . . . .  i r } of the set { 1 . . . . .  
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Step 2. In the case of  each subset { il . . . . .  i~ } apply the original version 
of  the kriging method based on sample points xit . . . . .  Xir and variogram y (h) .  
I f  all the weights obtained are nonnegative, then calculate the corresponding 
kriging variance by using the formula 

n 

V/,i2 . . . . .  ir = - 'Yvv  + 2 ~,  ~kik'~vik 
k = l  

r r 

- -  £ ~ ~ i k ~ i t ' y & i l  ( 1 1 )  
k = l  l = 1  

Step 3. Accept subset { i 1 . . . . .  i r } and corresponding weights Xir which 
give the smallest error variance defined by Eq. (11) the optimal solution. 

The main difficulty in applying this method is the fact that for each subset 
{ il . . . . .  i r } we have to repeat the whole kriging estimation process. Because 
the number of  nonempty subsets of  { 1 . . . .  , n } equals (2" - 1 ), the number 
of  kriging systems to be solved also is equal to (2 n - 1 ). For example,  if n = 
6, 26 - 1 = 63 solutions are required; i f n  = 10, then 2" - 1 = 1023 solutions 
are necessary. Furthermore 2 n - 1 tends to infinity exponentially, making com- 
putations unattractive even with a digital computer.  

However ,  a systematic generation of  all subsets { il . . . . .  i r } and use of  
a numerical technique known as " invers ion by b locks"  (Szidarovszky and Ya- 
kowitz, 1978) can be shown to make the above method very efficient, so that 
we can generate all possible subsets { i r, . . .  , ir } and obtain optimal weights 
and kriging variances without repeating the entire kriging process. 

Consider first the kriging equations based on the points { i~, . . .  , ir}. A 
simple rearranging of  the rows and columns gives 

- 0  1 l . . .  1 - 

1 "Yili l  ~/ i l i2 " " " "Yil ir  

1 "~i2il ~ i2 i2  " " " "~i2ir 

_ 1 ~/iri l  "Yiri2 " " " ~/irir__ -1 - 
Xil "Yvi~ 

~i2  = "~ vi2 

- -  )kir "YVir 

(12) 

that is, G k = y. Here G represents a ( r  + 1 ) x ( r  + 1 ) matrix, X and y are 
( r  + 1 )-dimensional vectors. Observe that the diagonal elements of  matrix G 
are equal to zero. 

Let ko denote the solution of  this system. 
Assume first that a new point xir+l is included into kriging; then the ex- 
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tended kriging equations can be rewritten as 

: (13) 
g T ~l  ir + l ir + l ~kir + l "~ Vir + ~ 

where gT = (1, 7/~+,i,, 7ir+~/2, • " • , 7 i r + , i r )  is a 1 X ( r  + 1) vector. 
The inverse of  the coefficient matrix of  system (13) can be given in block 

form (Szidarovszky and Yakowitz, 1978) 

i X Yl where (14) 
yT s 

- 1  - 1  
s - gVG_~g or s -- gTm 

y = - -G-Lgs  or y = - m s  

X = G -1 + _1 yyT when m = G - l g  (15) 
S 

and the solution of  the system of  equations given by Eq. (13) can be expressed 
in the form 

X i r + ,  = S (~ t lg i r+l  - -  gTL0) (16) 

k = k 0 -- G-lg~kir+i 

= ~k 0 - -  m ~ k i r + ,  (17) 

Note that Xir+, is the weight for point xir+~ and ko and k are the old solution 
and the vector constructed from the first r + 1 components of the old solution 
of the kriging system. 

The new kriging variance is given by the following 

V~., . . . . .  i r i r  + I = V i ,  . . . . .  i r  

- -  ( ~ l v i r + l  - -  g r G - l Y ) 2 / g V G - l g  

= V,.~ . . . . .  ir + (X/Zr+~/S) (18) 

Here, Vi~ . . . . .  i r is the original kriging variance, prior to adding the new point 

X i r  + 1 " 

ADDITION OF A POINT--ALGORITHM 1 

If a new point x i r+  ~ is added, the whole estimation method can be replaced 
by the following algorithm. 
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Step  1. Compute vector m = G -~g 
Step  2. Compute the following quantities to get the inverse of the ex- 

tended coefficient matrix 

- 1  1 
s -  y = - m s  X = G -I + - y y r  (19) 

gym s 

Step  3. Compute the new solution by relations 

Xir+l = S(  Xuir+l - gT~'~0) (20) 

k = ~o  - -  m u i r + ,  ( 2 1 )  

S tep  4. Update the estimation variance 

Vi~ . . . . .  irir+ 1 = Vi~, . . . , ir + X2ir+~/s (22) 

This algorithm can be justified as follows: 
Equations (19) are simple consequences of definition of m and relations 

(15). Equation (20) is the same as Eq. (16), but in order to verify relation (21), 
we have to observe that relations (18)-(20) imply 

( 'Yvir+l - -  grG-l~/)2/gT"G-lg = ('~Vir+, - -  g r k o ) 2 / g r m  

= - - S ( X i r + l / S )  2 

= - x L , / s  

DELETION OF A P O I N T - - A L G O R I T H M  2 

Assume that a point Xir+l has to be dropped from the estimation process. 
Coefficients of system (13), the inverse matrix (14), solutions (20) and (21), 
and estimation variance V~ . . . .  , i r i r+l  are known. 

G-~ ,  ko, and V/~ . . . . .  i r can be determined by the following algorithm. 
Step  1. Compute vector 

m = - ( l / s ) y  (23) 

Step  2. Compute matrix 

G - '  = X - ( I / s )  yyY (24) 

Step  3. Determine the solution of the smaller problem 

~0 = ~ q- m)kir+t  (25) 

Step  4: Compute the new estimation variance 

Vi~ . . . . .  ir = Vi 1 . . . . .  i r i r+l  -- ( X ~ r + , / S )  (26) 
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Observe that both Algorithms (1) and (2) need 0 ( r  2) operations instead of  
solving kriging Eqs. (12) or (13) by any variant of  the Gaussian elimination 
method, which needs 0 ( r  3) operations. 

GENERATION OF NONEMPTY S U B S E T S - - A L G O R I T H M  3 

Systematic generation of  all nonempty subsets { il, • • . , ir } can be illus- 
trated (Fig. 1) where a particular case of  n = 4 is chosen. All  nonempty subsets 
of  { 1, 2 . . . . .  n } are illustrated by vertices o f  a directed graph (tree), in which 
directed edges connect vertices. 

drop drop 

J l, J2, • . • , Js .it, J2 . . . . .  Js, J~ + l 

where j~ + 1 => Jr (l = 1, 2 . . . . .  s). Note that in the case of  any vertex which 
corresponds to the subset { il . . . . .  ir } 

{i, . . . . .  ir} V { j ,  . . . . .  Js} = {1 . . . . .  n} 

and these subsets are disjoint. Search Algorithm (3) can be described as follows: 
Step i. Perform the kriging method by using all sample points. I f  all 

weights Xi are nonnegative, stop. If  not, go to Step 2. 
Step 2. Set s = 0, t = 0, M = ¢v, M l : <:c. 
Step 3. I f  at least one of  the conditions 

s = n -  1 j ~ = n  t = n  M1 > M K =  1 

is satisfied, set K = 0 and go to Step 4, otherwise go to Step 5. 
Step 4. S e t t = j s ,  S = s -  1, and go to Step 7. 
Step 5. Sets  = s  + 1, t = t + 1,js = t, and go to Step 6. 
Step 6. Use Algorithm (2) assuming that the js + i point is dropped from 

the estimation process for updating the inverse of  the coefficient matrix of  the 
kriging system, new weights, and new estimation variance. Save these quan- 
tities together with the corresponding sequence of  { j l  . . . . .  Js }, if necessary. 
If  all weights are nonnegative, set K = 1 ; otherwise, set K = 0 and let M~ be 
the new estimation variance. If  M 1 < M, set M = MI and save the weights as 
the optimal nonnegative weights up to this stage. Go to Step 8. 

Step Z Use Algorithm 1 to recall the coefficient matrix, weights, and 
estimation variance; go to Step 3. 

Step 8. I f  s = 1 and Js = n, stop. Otherwise go to Step 3. These steps 
are illustrated (Fig. 1) as follows. Step 1 and Step 2 correspond to the starting 
point A of  the tree. 

In Step 1, s is the number of  dropped points, which is zero initially. Var- 
iable t is used only when we move backward on an edge. In that case, t gives 
the largest value ofj~,  J2 . . . . .  which belongs to the endpoint of  that edge. In 
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[ Drop L ~  Drop , 

. / d | X  1 X 2 X 3 ~ I x  ~ x a, x 3, x Drop L__ ' ' / ' 

Drop ~ [  Drop 
X 1, X 3 X1 ' X 3, X 4 

Drop X 

Drop 

2 ([ X ,  X 3 

Drop 
Xg X 4 

~ _  [ Drop 
Drop X 3 ~ X 3, X 4 

Drop X 4 

Fig. 1. Illustration of Algorithm 3. 

the case of  the initial point, we did not move  backward. Consequently, we 
chose t = 0. M is the least estimation variance found in previous cases using 
only nonnegative weights, and M~ is the estimator variance belonging to the 
vertex under consideration. 

If at least one negative weight exists the estimation variance belonging to 
the initial vertex must not be considered in the minimization process because it 
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does not belong to feasible solutions. Thus, in this case, M and M 1 should be 
set as c~. 

Step 3 checks whether a move forward or backward occurs. If  s = n - 1 
points have been dropped, by dropping an additional point only the empty set 
can be obtained. If  Js = n, no additional point can be dropped which has a 
larger subscript than Js. If t = n, all points which can be reached by a single 
forward step from this point have been examined before. If  M~ > M, the esti- 
mation variance corresponding to this point is larger than the best one found so 
far. 

In the first three cases, we cannot proceed forward along the tree, because 
no additional point exists or they have been searched earlier. In the last case, 
no reason exists to drop additional points, because the resulting estimation 
variance would be even worse. Step 4 gives a backward step, and Step 5 gives 
a forward step. Steps 6 and 7 update coefficients and the estimation variance. 
Step 8 checks whether the algorithm terminates or not. 

If  all quantities corresponding to all of the vertices cannot be saved because 
of limited memory, Step 7 should be modified. 

Step 9. By using Algorithm (1), update the coefficient matrix of the krig- 
ing system, weights, and estimation variance. Go to Step 3. 

I M P L E M E N T A T I O N  OF T H E  DEVELOPED A L G O R I T H M S  

A computer program ZKRIG was developed to implement the above three 
algorithms. Program ZKRIG is a block kriging program which uses the above 
algorithms to generate optimal nonnegative weights (Fig. 2). 

In order to reduce the tree search (Algorithm 3), program ZKRIG has an 
option not to search below a minimum number of a combination of sample 
points. This minimum number which is input by the user will depend on both 
the drilling density and size of the block to be estimated. Note that no precise 
rule gives that minimum number. It depends on the user's subjective judgement 
and past experience. 

CONCLUSION 

In linear kriging, negative weights are sometimes unavoidable. To guar- 
antee nonnegative kriging weights, an additional constraint Xi >- 0 (i = 1, 2, 
. . . .  n) must be considered and included in the kriging process. A numerical 
algorithm has been presented for the solution of the new set of kriging equa- 
tions. The developed algorithm generates optimal nonnegative weights from a 
set of sample points. The method selects a subset of samples from the available 
samples such that weights of  the subset are all nonnegative and also satisfy the 
unbiasedness condition of kriging. Also, the algorithm ensures the least esti- 
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Fig. 2. Simplified flow chart of program ZKRIG. 
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mation  var iance  among  all possible  combina t ions  of  sample points whose  

weights are all nonnega t ive .  The developed a lgor i thm util izes the solut ion tech- 

n ique  to the s tandard kr iging system of  equat ions ,  usual ly  without  nonnega t ive  
weight  constraint .  This  means  that a compute r  p rogram of  the standard l inear  

kriging system only  requires slight modif icat ions  in implementa t ion  of  the non-  
negat ive  constraint .  
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