
Point patterns

• A spatial point pattern is a set of locations generated by some

random process. They are distributed within a selected region.

The region is usually two-dimensional (but it can be one- or

three-dimensional). Examples: lightning strikes, earthquake epi-

centers, locations of pine trees, etc. We refer to the locations as

events.

• Consider the point process {Z(s) : s ∈ D ⊂ R2}. A realization

of this process consists of a pattern (arrangement) of point in D.

(D is a random set.). These points are called the events of the

point process.

• A point pattern is called completely random pattern (hypothesis

of complete spatial randomness - CSR) if the following

criteria hold:

– The average number of events (the intensity, λ(s)) is homo-

geneous throughout D.

– The number of events in two non-overlapping subregions A1

and A2 are independent.

– The number of events in any subregion follows the Poisson

distribution.

• Analysis of point pattern data begin with a test of CSR hypoth-

esis. If a particular pattern does not reject CSR then usually no

further statistical analysis is needed. If CSR is rejected then fur-

ther investigation is needed to explain the nature of the spatial

point pattern.
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• Most processes don’t follow a complete spatial random pattern.

Events may be independent in non-overlapping subregions, but

the intensity λ(s) is not homogeneous throughout D. For exam-

ple, more events will be present in regions where the intensity is

high and less will be present where the intensity is low. The in-

tensity may be constant, but the present of an event can attract

or drive away other events nearby.

• R packages for the analysis of spatial point patterns:

spatial

splancs

spatstat

maptools

See Chapter 7 of Bivand, R.S., Pebesma, E.J., Gómez-Rubio, V.

(2008). Applied Spatial Data Analysis with R, Use R!, Springer.

• Preliminary analysis of a point pattern:

It is focused on the spatial distribution of the observed events

to make inference on the process that generated them. We are

interested in (a) the distribution of the events in space and (b)

existence of possible interaction between them.

2



• Poisson process

There are many types of Poisson processes: Homogeneous Pois-

son process (HPP), inhomogeneous Poisson process (IPP), Pois-

son cluster process, and the compound Poisson process. A pro-

cess is called homogeneous Poisson process if the two following

properties hold:

– If N(A) denotes the number of events in subregion A ⊂ D,

then N(A) ∼ Poisson(λv(A)), where 0 < λ < ∞ is the

constant intensity of the process.

– If A1 and A2 are two disjoint subregions of D, then N(A1)

and N(A2) are independent.

If the intensity function λ(s) varies spatially then the first con-

dition does not hold, but the second condition may still hold. In

this case the process is called inhomogeneous Poisson process.

(The homogeneous Poisson process is a special case of the inho-

mogeneous Poisson process.). The homogeneous Poisson process

is also called the stationary Poisson process, while the inhomo-

geneous Poisson process is also called the non-stationary Poisson

process.

• Testing for complete spatial randomness:

We want to test if the observed point pattern is a realization of

a homogeneous Poisson process. The statistical tests are based

on counts of events in regions (quadrats) or based on distances.

When the sampling distributions are difficult one can rely on

simulations methods. There are two methods of simulations:

The Monte Carlo test and simulation envelopes.
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• Test based on quadrats

Data set longleaf: 584 long-leaf pine trees from the Wade

Tract, a forest in Thomas County, Georgia. The data consists of

the location of each tree (x, y) coordinates and its diameter at

breast height (dbh) in centimeters. Area covered 200m× 200m.
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Do the spatial locations in these plots appear completely random

or are they clustered?
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One hundred non-overlapping quadrats (each one with radius 6

meters) were randomly chosen in the area of study and the num-

ber of trees were counted in each quadrat. The next plot is only

an example! (The quadrats are not randomly chosen.)
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The following frequencies are obtained:

Trees per Observed Estimated

quadrat frequency frequency

0 34 23.93

1 33 34.22

2 17 24.47

3 7 11.66

4 3 4.17

5 1 1.19

6 1 0.28

7 2 0.06

8 1 0.01

9 0 0.00

10 1 0.00
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Estimate Poisson parameter λ̂ = 34×0+33×1+...+1×10
100 = 1.43. The

expected frequencies are computed using the Poisson probability

mass function, e.g., the expected number of quadrats with zero

trees will be 100× P (Y = 0) = 1001.430exp(−1.43)
0! = 23.93.

To test the hypothesis of a complete spatial randomness (which
is synonymous with homogeneous Poisson process) one can use
the χ2 goodnes-of-fit test.

X2 =
6∑

i=1

(Oi − Ei)
2

Ei
=

(34− 23.93)2

23.93
+ . . .+

(6− 1.54)2

1.54
= 21.67.

Since 21.67 > χ2
0.95;4 = 9.49 the null hypothesis of homogeneous

Poisson process is rejected.

• If quadrats are contiguous then we have lattice data.
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Using Moran’s I and Geary’s c statistics we can test for cluster-

ing. Here we identify regions with high values in short distances

which suggests clustering.
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• Test based on distances

Distance methods use the exact location of the events. They do

not dependent on the arbitrary choice of quadrat size or shape.

See Cressie (1993), p. 604 for various test statistics based on

distances along with their asymptotic distributions.

• Test based on simulations

- Monte Carlo tests

These can be used for many statistical analysis spatial or non-

spatial. The general idea: Compute a test statistic from the

observed data, call it q0. Then simulate the random process

say, g times. For each realization compute the test statistics

q1, . . . , qg. Then rank the simulated test statistics and place

the observed test statistic q0 in the ordered array and com-

pute the p-value. For example the average nearest neighbor

distance can be used. It can be computed using simulations

by generating points independently and uniformly in the area

of interest.

- Simulation envelopes

Find the nearest neighbor distance for event i = 1, . . . , n.

Let d1, d2, . . . , dn be the nearest neighbor distances. Com-

pute the estimate of the distribution function Ĝ(d) of nearest-

neighbor event distances as follows: Let I(di ≤ r) be the

indicator function that takes the value 1 if di ≤ r or 0 if

di > r. Compute Ĝ(r) = 1
n

∑n
i=1 I(di ≤ r) for various n

distance r.

For the same distances r compute the theoretical G function.

Under csr it is equal to G(r) = 1− e−λπr2.
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Finally, plot Ĝ(r) against G(r). Under complete spatial ran-

domness the plot should be roughly linear.

To measure the departure from linearity we should find the

sampling distribution of Ĝ(r) under complete spatial ran-

domness, which not easy, because of the dependence between

the distances (for example, if the nearest neighbor for point

1 is point 2 then the nearest neighbor for point 2 will be

point 1, and so on). We therefore assess linearity using sim-

ulations. We compute Ĝ(r) for many simulations. Each

simulation consists of n independent uniformly distributed

points in the area of interest. For each simulation we com-

pute the minimum and maximum value of Ĝ(r) to construct

the simulation envelope as shown below.
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