University of California, Los Angeles Department of Statistics

Statistics C173/C273

Instructor: Nicolas Christou

Homework 3

EXERCISE 1

We discussed on Friday, 01/21 different methods for testing for autocorrelation. One of the methods using spatiotemporal data is to transform the data into binary data. Please create a simple example to test the hypothesis of spatial and temporal clustering using a contingency table.

EXERCISE 2

Also on Friday, 01/21 we started discussing testing for autocorrelation for lattice data, and we introduced the idea of *BB* and *BW* joins. The formula for the number of *BB* and *BW* joins are given as follows: $BB = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} Z(s_i) Z(s_j)$ and

$$BW = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} [Z(s_i) - Z(s_j)]^2$$
.

Please provide an example using a regular lattice (similar to the one from lecture) to verify that BB and BW provides the number of joins.

EXERCISE 3

Consider the county adjacency file downloaded from

https://www.census.gov/geographies/reference-files/2010/geo/county-adjacency.html. You can read the data in R using:

a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/ county_adjacency.txt", sep="\t", fill=FALSE, strip.white=TRUE)[,c(1,3)]

Answer the following questions:

- a. Construct the adjacency matrix for the counties of California, $w_{ii} = 0, w_{ij} = 1$, etc., as we discussed in class.
- b. Use the maps package to plot the map of California with the county lines. Add the seat of each county on the map. You can access the county seats here:

a <- read.table("http://www.stat.ucla.edu/~nchristo/statistics_c173_c273/ ca_seats_coord.txt", header=TRUE)

Compute the distance matrix for the California county seats.

EXERCISE 4

Show that the Moran's I statistic is not affected if the data are multiplied by a constant λ . For example, using $Z(s_i), i = 1, ..., n$ or $\lambda Z(s_i), i = 1, ..., n$ will give the same I statistic.

EXERCISE 5

Consider the 2 × 3 regular lattice with observations $Z(s_1) = 5$, $Z(s_2) = -3$, $Z(s_3) = -6$, $Z(s_4) = 2$, $Z(s_5) = 4$, $Z(s_6) = -2$ as in the following layout:

	Column 1	Column 2	Column 3
Row 1	$Z(s_1) = 5$	$Z(s_2) = -3$	$Z(s_3) = -6$
Row 2	$Z(s_4) = 2$	$Z(s_5) = 4$	$Z(s_6) = -2$

For the adjacency matrix assume that the lattices are connected in the east-west and south-north directions,, i.e. there is connectivity east or west of the lattice and north or south of the lattice. For example, lattice 2 is adjacent to lattices 1 to west direction, 3 to east direction, and 5 to south direction.

Answer the following questions:

- a. Find the mean and variance of the Moran's I statistic using the permutation test by enumerating all the 6! permutations of the lattice. Construct the histogram of the 6! values of I.
- b. Under normality, the mean of I is given by $E(I) = -\frac{1}{n-1}$ and $EI^2 = \frac{1}{(n-1)(n+1)S_0^2} \left[n^2 S_1 - nS_2 + 3S_0^2 \right].$ Note: Note: $S_0 = \sum_{i=1}^n \sum_{j=1}^n w_{ij},$ $S_1 = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n (w_{ij} + w_{ji})^2,$ $S_2 = \sum_{i=1}^n \left(\sum_{j=1}^n w_{ij} + \sum_{j=1}^n w_{ji} \right)^2,$

Compute the empirical *p*-value using the permutation test under the hypothesis of no spatial autocorrelation (use the data from (a)) and compare it with the *p*-value based on normal approximation using the formulas in (b). Note: Using EI and EI^2 compute the variance of I and then compute $Z = \frac{I - E[I]}{\sqrt{\operatorname{var}[I]}}$.