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We observe Z = (Z(s1),Z(s2),...Z(sy)) and we want to predict 7" = Z(so) and let

T = Z(sg) = h(Z) (a function of the data Z. We assume T' = w'Z).

Theorem 1 )
As discussed, kriging minimizes the mean square prediction error, MSE(Z(so)) = E(Z(so) —
Z(s0))?. An important result is the following: MSFE(Z(sg)) takes its minimum value when

A

Z(s0) = E(Z(s0)|Z).

Proof

The proof is based on the expectation by conditioning. Here is an introductory example first!
Let X,Y be random variables. We can find the expectation of Y using EY = [ f(y)dy,
however we can also find FY by conditioning on X:

EY = Ex [Ey[Y|X]]

Note: The subscripts above mean that we take expectation with respect to that random
variable. The proof of this very useful result is given next. Suppose Y, X have joint pdf
f(z,y). If g(z,y) is a function of X, Y then Fg(z,y) = [, [To 9(x,y) f(z, y)dzdy.

BY = /_o;/_o;yf(y,x)dydx
- /O:o [ O:Oyf(ylﬂf)f(ﬂﬂ)dydgg

= /O:o [/ny(y!fﬂ)dy

_ /_O;E(Y|X)f(x)dx
= Ex[Ey[Y|X]]

f(z)dx

How do we use this result in the spatial prediction problem? We write the MSE(Z(sq)) as
follows:

MSE(T) = E(T = T)* = Ez[Er|[T — T)*|Z]]

Now using expectation operations (e.g. FQ?* = var(Q) + (EQ)?) for the inner expectation
we get:

Er[(T — T 2) = varg[(T — 1)\ 2) + [Ed[(T — T)|2)] (1)

However, conditioning on Z, any function of Z is a constant and therefore we note the next
two results:

varp[(T — T)|Z) = varp(T|Z) and Ep[(T —T)|Z] = Ep(T|Z) - T. (2)



Using (2) we write (1) as follows:
. L2
Er[(T = T)’|2) = vary(T|2) + |Ep(T|Z) = T (3)
Finally take expectation of (3) w.r.t. Z to get
. L2
BT =) = By [oors(T12)) + By [ [Bo(112) - 1] @)

Equation (4) decomposed the M SE(T) into two parts: The first term on the right-hand side
does not depend on the choice of T" and therefore we cannot do anything about it! However
the second term on the right-hand side can take its minimum value when 7' = E(T|Z) which
will be our predictor!

Before we actually find the predictor in our spatial prediction problem we present another
important result from multivariate normal distribution.

Theorem 2
Suppose that Y, pu, and ¥ are partitioned as follows Y = ( Y, ) = ( H ) , X =

Y, ko
Y X L s
S ;and Y ~ MV N(u,X). It can be shown that the conditional distribution of
21 2422

Y; given Y is also multivariate normal, Y;|Yy ~ MVN(p,1|2, 3j2), where
M2 = My + 31955 (Ya — py), and e = M1 — 21255 Zor.

Apply now Theorem 1 and Theorem 2 in the spatial prediction problem. Assume the dis-

tribution of Z§O> is multivariate normal with mean vector 1 and variance covariance
[ o* . Z(s0) w o’
matrix ( c C , Le. 7 ~ Npy1 )\ e c ,

Result

Using the previous theorems, the predictor that minimizes the mean square prediction error
(see Theorem 1) will be (see Theorem 2) Z(so) = p + ¢/C~*(Z — p1), which is the simple
kriging predictor. The prediction variance (also see Theorem 2) will be ¢ — ¢'S5)c =
C(0) — ¢’C1c, which is the simple kriging variance.



