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Kriging revisited

We observe Z = (Z(s1), Z(s2), . . . Z(sn))′ and we want to predict T = Z(s0) and let
T̂ = Ẑ(s0) = h(Z) (a function of the data Z. We assume T̂ = w′Z).

Theorem 1
As discussed, kriging minimizes the mean square prediction error, MSE(Ẑ(s0)) = E(Z(s0)−
Ẑ(s0))

2. An important result is the following: MSE(Ẑ(s0)) takes its minimum value when
Ẑ(s0) = E(Z(s0)|Z).

Proof
The proof is based on the expectation by conditioning. Here is an introductory example first!
Let X, Y be random variables. We can find the expectation of Y using EY =

∫∞
−∞ f(y)dy,

however we can also find EY by conditioning on X:

EY = EX [EY [Y |X]]

Note: The subscripts above mean that we take expectation with respect to that random
variable. The proof of this very useful result is given next. Suppose Y,X have joint pdf
f(x, y). If g(x, y) is a function of X, Y then Eg(x, y) =

∫∞
−∞

∫∞
−∞ g(x, y)f(x, y)dxdy.

EY =
∫ ∞
−∞

∫ ∞
−∞

yf(y, x)dydx

=
∫ ∞
−∞

∫ ∞
−∞

yf(y|x)f(x)dydx

=
∫ ∞
−∞

[∫ ∞
−∞

yf(y|x)dy
]
f(x)dx

=
∫ ∞
−∞

E(Y |X)f(x)dx

= EX [EY [Y |X]]

How do we use this result in the spatial prediction problem? We write the MSE(Ẑ(s0)) as
follows:

MSE(T̂ ) = E(T − T̂ )2 = EZ [ET [T − T̂ )2|Z]]

Now using expectation operations (e.g. EQ2 = var(Q) + (EQ)2) for the inner expectation
we get:

ET [(T − T̂ )2|Z] = varT [(T − T̂ )|Z] +
[
ET [(T − T̂ )|Z]

]2
(1)

However, conditioning on Z, any function of Z is a constant and therefore we note the next
two results:

varT [(T − T̂ )|Z] = varT (T |Z) and ET [(T − T̂ )|Z] = ET (T |Z)− T̂ . (2)
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Using (2) we write (1) as follows:

ET [(T − T̂ )2|Z] = varT (T |Z) +
[
ET (T |Z)− T̂

]2
(3)

Finally take expectation of (3) w.r.t. Z to get

E(T − T̂ )2 = EZ [varT (T |Z)] + EZ

[[
ET (T |Z)− T̂

]2]
(4)

Equation (4) decomposed the MSE(T̂ ) into two parts: The first term on the right-hand side
does not depend on the choice of T̂ and therefore we cannot do anything about it! However
the second term on the right-hand side can take its minimum value when T̂ = E(T |Z) which
will be our predictor!

Before we actually find the predictor in our spatial prediction problem we present another
important result from multivariate normal distribution.

Theorem 2

Suppose that Y, µ, and Σ are partitioned as follows Y =

(
Y1

Y2

)
,µ =

(
µ1

µ2

)
,Σ =(

Σ11 Σ12

Σ21 Σ22

)
, and Y ∼MVN(µ,Σ). It can be shown that the conditional distribution of

Y1 given Y2 is also multivariate normal, Y1|Y2 ∼MVN(µ1|2,Σ1|2), where

µ1|2 = µ1 + Σ12Σ
−1
22 (Y2 − µ2), and Σ1|2 = Σ11 −Σ12Σ

−1
22 Σ21.

Apply now Theorem 1 and Theorem 2 in the spatial prediction problem. Assume the dis-

tribution of

(
Z(s0)

Z

)
is multivariate normal with mean vector µ1 and variance covariance

matrix

(
σ2 c′

c C

)
, i.e.

(
Z(s0)

Z

)
∼ Nn+1

((
µ
µ1

)
,

(
σ2 c′

c C

))
,

Result
Using the previous theorems, the predictor that minimizes the mean square prediction error
(see Theorem 1) will be (see Theorem 2) Ẑ(s0) = µ + c′C−1(Z − µ1), which is the simple
kriging predictor. The prediction variance (also see Theorem 2) will be σ2 − c′Σ−122 c =
C(0)− c′C−1c, which is the simple kriging variance.
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