Modeling coregionalization

(Goovaerts, P. (1989), Geostatistics for Natural Resources Evaluation

Suppose there are \(k \) colocated random variables. Modeling coregionalization requires computing and fitting of \(k + \binom{k}{2} = \frac{k(k+1)}{2} \) auto and cross-semivariograms (or covariance functions).

Suppose \(Z_i(s_j), i = 1, \ldots, k \) are \(k \) intercorrelated random variables and \(s_1, s_2, \ldots, s_n \) are the spatial locations that we observe these variables. Consider a linear combination of the type
\[
Y = \sum_{i=1}^{k} \sum_{j=1}^{n} w_{ij} Z_i(s_j).
\]
It’s variance must be nonnegative and therefore,
\[
\text{var}(Y) = k \sum_{i=1}^{k} \sum_{j=1}^{n} \sum_{a=1}^{n} \sum_{b=1}^{n} w_{ai} w_{bj} c(s_i, s_j).
\]

This variance can be expressed in terms of a matrix \(C \) which contains covariances and cross-covariances involving the \(k \) random variables. Therefore, the matrix \(C \) must be positive semidefinite, or equivalently, the matrix of semivariograms must be conditionally negative semidefinite. To achieve this, we express each random variable as a function of \(p \) independent random variables each one with mean zero and covariance function \(c_i(h) \):

\[
Z_i(s) = \sum_{l=1}^{p} a_{il} Y_l + \mu_i, \quad i = 1, \ldots, k.
\]

Here they are:
\[
\begin{align*}
Z_1(s) &= a_{11} Y_1 + a_{12} Y_2 + \ldots + a_{1p} Y_p + \mu_1 \\
Z_2(s) &= a_{21} Y_1 + a_{22} Y_2 + \ldots + a_{2p} Y_p + \mu_2 \\
\vdots &= \vdots \\
Z_k(s) &= a_{k1} Y_1 + a_{k2} Y_2 + \ldots + a_{kp} Y_p + \mu_k
\end{align*}
\]

with, \(E[Y_l(s)] = 0, l = 1, \ldots, p. \)
\(E[Z_i(s)] = \mu_i, i = 1, \ldots, k. \)
\(\text{cov}[(Y_l(s), Y_{l'}(s+h))] = c_l(h) \) if \(l = l' \), and 0 otherwise.

Using the above we can express the covariance between two random variables \(Z_i(s) \) and \(Z_i(s+h) \) as follows:
\[
c_{12}(h) = \text{cov}[Z_1(h), Z_2(s+h)] = \text{cov}(a_{11} Y_1 + a_{12} Y_2 + \ldots + a_{1p} Y_p + \mu_1, a_{21} Y_1 + a_{22} Y_2 + \ldots + a_{2p} Y_p + \mu_2,)
\]
\[
= a_{11}a_{21}c_1(h) + a_{12}a_{22}c_2(h) + \ldots + a_{1p}a_{2p}c_p(h).
\]

Similarly the expression of the cross-semivariogram is:
\[
\gamma_{12}(h) = a_{11}a_{21}\gamma_1(h) + a_{12}a_{22}\gamma_2(h) + \ldots + a_{1p}a_{2p}\gamma_p(h).
\]
Example:
Consider two random variables $Z_1(s)$ and $Z_2(s)$ and suppose we express them as linear combinations of Y_1, Y_2, Y_3.

\[
Z_1(s) = a_{11}Y_1(s) + a_{12}Y_2(s) + a_{13}Y_3(s) + \mu_1 \\
Z_2(s) = a_{21}Y_1(s) + a_{22}Y_2(s) + a_{23}Y_3(s) + \mu_2
\]

Then the auto and cross semivariograms can be expressed as follows:

\[
\begin{align*}
\gamma_{11}(h) &= a_{11}^2 \gamma_1(h) + a_{12}^2 \gamma_2(h) + a_{13}^2 \gamma_3(h) \\
\gamma_{22}(h) &= a_{21}^2 \gamma_1(h) + a_{22}^2 \gamma_2(h) + a_{23}^2 \gamma_3(h) \\
\gamma_{12}(h) &= a_{11}a_{21} \gamma_1(h) + a_{12}a_{22} \gamma_2(h) + a_{13}a_{23} \gamma_3(h)
\end{align*}
\]

Or using different notation:

\[
\begin{align*}
\gamma_{11}(h) &= u_1 \gamma_1(h) + u_2 \gamma_2(h) + u_3 \gamma_3(h) \\
\gamma_{22}(h) &= v_1 \gamma_1(h) + v_2 \gamma_2(h) + v_3 \gamma_3(h) \\
\gamma_{12}(h) &= w_1 \gamma_1(h) + w_2 \gamma_2(h) + w_3 \gamma_3(h)
\end{align*}
\]

The semivariograms $\gamma_1(h), \gamma_2(h), \gamma_3(h)$ are called the basic models and we express the previous system of equations for each basic model as follows:

Combinations of the first basic model $\gamma_1(h)$

\[
\begin{pmatrix}
\gamma_{11}(h) & \gamma_{12}(h) \\
\gamma_{21}(h) & \gamma_{22}(h)
\end{pmatrix}
= \begin{pmatrix} u_1 & w_1 \\ w_1 & v_1 \end{pmatrix}
\begin{pmatrix}
\gamma_1(h) \\
0
\end{pmatrix}
= \begin{pmatrix}
u_1 \gamma_1(h) + u_2 \gamma_2(h) + u_3 \gamma_3(h) \\
0
\end{pmatrix}.
\]

Combinations of the second basic model $\gamma_2(h)$

\[
\begin{pmatrix}
\gamma_{11}(h) & \gamma_{12}(h) \\
\gamma_{21}(h) & \gamma_{22}(h)
\end{pmatrix}
= \begin{pmatrix} u_2 & w_2 \\ w_2 & v_2 \end{pmatrix}
\begin{pmatrix}
\gamma_2(h) \\
0
\end{pmatrix}
= \begin{pmatrix}
u_2 \gamma_1(h) + v_2 \gamma_2(h) + v_3 \gamma_3(h) \\
0
\end{pmatrix}.
\]

Combinations of the third basic model $\gamma_3(h)$

\[
\begin{pmatrix}
\gamma_{11}(h) & \gamma_{12}(h) \\
\gamma_{21}(h) & \gamma_{22}(h)
\end{pmatrix}
= \begin{pmatrix} u_3 & w_3 \\ w_3 & v_3 \end{pmatrix}
\begin{pmatrix}
\gamma_3(h) \\
0
\end{pmatrix}
= \begin{pmatrix}
u_3 \gamma_1(h) + v_3 \gamma_2(h) + w_3 \gamma_3(h) \\
0
\end{pmatrix}.
\]

The system will be positive definite if all the matrices of the coefficients u, v, w are positive definite, i.e. $u_j, v_j > 0$ and $u_j v_j > w_j^2$ (determinant is larger than zero).