University of California, Los Angeles Department of Statistics

Statistics C173/C273

Instructor: Nicolas Christou

Results on independence using normally distributed random variables

Suppose Y_1, \ldots, Y_n are i.i.d. random variables with $Y_i \sim N(\mu, \sigma)$. We will show independence between $\sum_{i=1}^{n} (Y_i - \bar{Y})^2$ and \bar{Y} and that $\sum_{i=1}^{n} (Y_i - \bar{Y})^2$ can be expressed as a sum of n-1 independent linear combinations of Y_1, \ldots, Y_n using the following matrix \mathbf{A} .

purple of the problem of
$$Y_1, \dots, Y_n$$
 using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following matrix \mathbf{A} . Some purple of Y_1, \dots, Y_n using the following ma

We see that $\mathbf{A}'\mathbf{A} = \mathbf{I}$. Why?

Consider the expression **AY**. This is equal to:

$$\mathbf{AY} = \begin{pmatrix} \sqrt{n\bar{Y}} \\ Q_1 \\ Q_2 \\ \vdots \\ \vdots \\ Q_{n-1} \end{pmatrix}. \text{ Therefore, } \mathbf{Y'Y} = \mathbf{Y'A'AY} = (\mathbf{AY})'(\mathbf{AY}) = n\bar{Y}^2 + Q_1^2 + Q_2^2 + \ldots + Q_{n-1}^2.$$

Note:

$$Q_{1} = \frac{Y_{1} - Y_{2}}{\sqrt{2}}.$$

$$Q_{2} = \frac{Y_{1} + Y_{2} - 2Y_{3}}{\sqrt{2 \times 3}}.$$

$$Q_{3} = \frac{Y_{1} + Y_{2} + Y_{3} - 3Y_{4}}{\sqrt{3 \times 4}}.$$

$$\vdots \qquad \vdots$$

$$Q_{n-1} = \frac{Y_{1} + Y_{2} + Y_{3} + \ldots + Y_{n-1} - (n-1)Y_{n}}{\sqrt{(n-1) \times n}}$$

Now consider $\sum_{i=1}^{n} (Y_i - \bar{Y})^2$:

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} Y_i^2 - n\bar{Y}^2$$

$$= n\bar{Y}^2 + Q_1^2 + Q_2^2 + \dots + Q_{n-1}^2 - n\bar{Y}^2$$

$$= Q_1^2 + Q_2^2 + \dots + Q_{n-1}^2 = \sum_{i=1}^{n-1} Q_i^2.$$