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Results on independence using normally distributed random variables

Suppose Y; s, Yy are 1id. random variables with Y; ~ N (u,0). We will show independence between
St (Y; —Y)? and Y and that Y. (Y; — Y)? can be expressed as a sum of n — 1 independent linear
combinations of Y7,...,Y, using the following matrix A.
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We see that A’A =1. Why?
Consider the expression AY. This is equal to:
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Now consider >_1"  (Y; — Y)2:
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