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Matrix and vector differentiation

Let

be a p-dimensional vector and let f(0) be a function of & . When the derivative of f(0) is taken with respect
to the vector @ we mean that the partial derivative of f(8) is taken with respect to each element of 0 | i.e.
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We will present now two important results of matrix differentiation.

1. Let 0 as defined above and ¢’ = (c1,¢2,...,¢,). If f(0) = ¢80 it follows that
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2. Let A be a p X p symmetric matrix and let 8 as define above. Define now the quadratic expression
f(8) = 0'A6. 1t follows that

9f(6)
——= =2A860.
00
Proof
Let
a11 G122 Q13 c.. Q1p a&
a21 Q22 G23 ... Q2p a’z
A= =

ap1  Ap2 Gp3 ... Gpp ap



We can write f(6) as: f(0) = 0'A0 =7 0%a; + 250 P 6:0,a,;.
Take the derivative of f(0) with respect to 6: 04(0)
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Take the derivative of f(0) with respect to 65: 9£(6)

Take the derivative of f(6) with respect to 6,: 9/(6)

Therefore,
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= 2a1101 + 22?#1 Cbljej = 2215:1 a1j9j = 23’10.

= 2a2202 +2 2?752 a2j9j =2 Z?:l a2j0j = 23’20

= 2apptp + 2 Zf;ep apjt; =2 Z§=1 ap;f; = 2a,0.



