University of California, Los Angeles Department of Statistics

Statistics C173/C273

Instructor: Nicolas Christou

Random vectors and properties

We will continue now by finding the expected value and variance of $\hat{\beta}$. Before we do this, we will review very quickly in the next section the mean and variance of random vectors with some properties.

Mean and variance of a random vector

Let
$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{pmatrix}$$
 be a random vector with $E\mathbf{Y} = \begin{pmatrix} EY_1 \\ EY_2 \\ \vdots \\ EY_n \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_n \end{pmatrix} = \boldsymbol{\mu}$. The variance covariance matrix of

Y denoted with $var(\mathbf{Y})$ is defined as follows:

$$\begin{aligned} var(\mathbf{Y}) &= E(\mathbf{Y} - \boldsymbol{\mu})(\mathbf{Y} - \boldsymbol{\mu})' \\ &= E\begin{pmatrix} Y_1 - \mu_1 \\ Y_2 - \mu_2 \\ \vdots \\ Y_n - \mu_n \end{pmatrix} (Y_1 - \mu_1, Y_2 - \mu_2, \dots, Y_n - \mu_n) \\ &= E\begin{pmatrix} (Y_1 - \mu_1)^2 & (Y_1 - \mu_1)(Y_2 - \mu_2) & \dots & (Y_1 - \mu_1)(Y_n - \mu_n) \\ (Y_2 - \mu_2)(Y_1 - \mu_1) & (Y_2 - \mu_2)^2 & \dots & (Y_2 - \mu_2)(Y_n - \mu_n) \\ &\vdots & \vdots & \ddots & \vdots \\ (Y_n - \mu_n)(Y_1 - \mu_1) & (Y_n - \mu_n)(Y_2 - \mu_2) & \dots & (Y_n - \mu_n)^2 \end{pmatrix} \\ &= \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \dots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \dots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \dots & \sigma_n^2 \end{pmatrix} = \mathbf{\Sigma}. \end{aligned}$$

So Σ is the variance covariance matrix of the vector \mathbf{Y} . It is symmetric and positive definite. Two important results are given below that will helps us find the expected value and variance of $\hat{\boldsymbol{\beta}}$.

1. Expected value and variance of a linear combination of **Y**. Let $\mathbf{a} = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$ be a vector of constants and let

$$q = \mathbf{a}'\mathbf{Y}$$
. Then $E(q) = E(\mathbf{a}'\mathbf{Y}) = \mathbf{a}'E(\mathbf{Y}) = \mathbf{a}'\mu$. The variance of q can be found as follows:

$$var(q) = E(q - \mu_q)^2 = E(\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu})^2$$
$$= E(\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu})(\mathbf{a}'\mathbf{Y} - \mathbf{a}'\boldsymbol{\mu})$$
$$= \mathbf{a}'E(\mathbf{Y} - \boldsymbol{\mu})(\mathbf{Y} - \boldsymbol{\mu})'\mathbf{a}$$
$$= \mathbf{a}'\boldsymbol{\Sigma}\mathbf{a}.$$

Note: q is a scalar and therefore its variance should be a scalar and not a matrix. We can verify that $var(q) = \mathbf{a}' \Sigma \mathbf{a}$ is 1×1 .

2. Let **A** be a $p \times n$ matrix of constants. We will examine now $\mathbf{Q} = \mathbf{A}\mathbf{Y}$. Unlike q (see result (1) above), **Q** is a $p \times 1$ vector and therefore its variance should be a $p \times p$ matrix. Let's find the expected value of **Q** first. $E(\mathbf{Q}) = E(\mathbf{A}\mathbf{Y}) = \mathbf{A}E(\mathbf{Y}) = \mathbf{A}\mu$.

$$var(\mathbf{Q}) = E(\mathbf{Q} - E(\mathbf{Q}))(\mathbf{Q} - E(\mathbf{Q}))' = E(\mathbf{A}\mathbf{Y} - \mathbf{A}\boldsymbol{\mu})(\mathbf{A}\mathbf{Y} - \mathbf{A}\boldsymbol{\mu})'$$
$$= \mathbf{A}E(\mathbf{Y} - \boldsymbol{\mu})(\mathbf{Y} - \boldsymbol{\mu})'\mathbf{A}'$$
$$= \mathbf{A}\boldsymbol{\Sigma}\mathbf{A}'.$$