QUIT 2 SOLUTIONS

1. \(p = 2.50 \) \(y = 1\% \) PER MONTH

 \[S_0 = 46.5 \]

 \[E = 50 \]

 LOWER BOUND

 \[p \geq \frac{E}{e^{rt}} - S_0 \]

 or \(p \geq \frac{50}{1.01} - 46.5 \rightarrow p \geq 2.00 \)

 BUT \(p = 2.5 \) CHEAPER

 BORROW

 49 TO

 - BUY PUT

 - BUY STOCK

 \[\text{IN 1 MONTH MUST RETURN} \]

 \[49 (1.01) = 49.49 \]

 AT EXPIRATION

 IF \(ST < 50 \) \(SELL \) STICK AT 50 \(\rightarrow 49.49 = 0.51 \)

 IF \(ST > 50 \) \(SELL \) STICK AT 52 \(\rightarrow 49.49 = 2.51 \)

 (SAY 52)

2. **PUT-CALL PARITY**

 \[p + S_0 = c + \frac{E}{e^{rt}} \]

 \[3 + 19 ? 3 + \frac{50}{1.015} \]

 \[22 ? 22.40 \]
2. **Put-Call Parity**

\[P + S_0 = C + \frac{E}{1 + r} \]

\[P + S_0 = 3 + 19 = 22 \]

\[C + \frac{E}{1 + r} = 3 + \frac{20}{1.015} = 22.70 \]

Buy put
Drown 22
Buy stock
Sell call
Plus 3

\[\text{If } S_T > 20 \text{ sell stock at 20} \]
\[\text{If } S_T \leq 20 \text{ sell stock at 20} \]

3. **Strangle**

<table>
<thead>
<tr>
<th>(S_T)</th>
<th>Payoff from Call</th>
<th>Payoff from Put</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>(S_T \leq E_1)</td>
<td>0</td>
<td>(E_1 - S_T)</td>
<td>(E_1 - S_T)</td>
</tr>
<tr>
<td>(E_1 < S_T \leq E_2)</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>(S_T > E_2)</td>
<td>(S_T - E_2)</td>
<td>0</td>
<td>(S_T - E_2)</td>
</tr>
</tbody>
</table>

Payoff

\[\text{Stock Price} \]

\[E_1 \]

\[E_2 \]
4. Stock Price
 Exercise Price
 Volatility
 \[\uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \quad \uparrow \]

5. Lower stock price will increase the price of the put. Therefore B.

6. Buy put with exercise price \(E_1 \)
 Sell put with exercise price \(E_2 \)

\[
\begin{array}{c|c|c|c}
\text{ST} & \text{Payoff from Long Put (E1)} & \text{Payoff from Short Put (E2)} & \text{Total} \\
\hline
\text{ST < E1} & \text{E1 - ST} & \text{ST - E2} & \text{E1 - E2} \\
\text{E1 < ST < E2} & 0 & \text{ST - E2} & \text{ST - E2} \\
\text{ST > E2} & 0 & 0 & 0 \\
\end{array}
\]

Payoff diagram
7. USING CALLS \(E_1 \quad E_2 \quad E_3 \)
BUY 1 SELL 2 BUY 1
\[E_2 = \frac{E_1 + E_3}{2} \]

USING PUTS \(E_1 \quad E_2 \quad E_3 \)
BUY 1 SELL 2 BUY 1
\[E_2 = \frac{E_1 + E_3}{2} \]

<table>
<thead>
<tr>
<th>TABLE USING CALLS</th>
<th>PAYOFF</th>
<th>PAYOFF</th>
<th>PAYOFF</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST ≤ E_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E_1 < ST ≤ E_2</td>
<td>0</td>
<td>0</td>
<td>-2(ST-E_2)</td>
<td>E_2 - ST</td>
</tr>
<tr>
<td>E_2 < ST ≤ E_3</td>
<td>0</td>
<td>-2(ST-E_2)</td>
<td>E_3 - ST</td>
<td></td>
</tr>
<tr>
<td>ST > E_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE USING PUTS</th>
<th>PAYOFF</th>
<th>PAYOFF</th>
<th>PAYOFF</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST ≤ E_1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E_1 < ST ≤ E_2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>E_2 < ST ≤ E_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ST > E_3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
8. \[\begin{array}{c}
\text{buy 1} \\
\text{sell 2} \\
\text{buy 1}
\end{array} \]

\[p_1 = 21 \quad p_2 = 68 \quad p_3 = 115 \]

See Question 7

9. \[p + 50 = c + \frac{e}{1 + r} \]

\[p + E = c + \frac{e}{1 + r} \rightarrow c - p = E - \frac{e}{1 + r} > 0 \]

10. \(S \sim N(50, 10) \)

\(E = 60 \)

\[P(S < 60) = P\left(z < \frac{60 - 50}{10} \right) = P\left(z < 1 \right) = 0.8413. \]