University of California, Los Angeles Department of Statistics

Instructor: Nicolas Christou

Statistics C183/C283

Exercise

From Options Futures and Other Derivatives by John Hull, Prentice Hall 6th Edition, 2006.

The Black-Scholes-Merton formula for the value C of a European call option at time t and expiration time at time T is given by

$$C = S_0 \Phi(d_1) - \frac{E}{e^{r(T-t)}} \Phi(d_2)$$

$$d_{1} = \frac{\ln(\frac{S_{0}}{E}) + (r + \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}}$$

$$d_{2} = \frac{\ln(\frac{S_{0}}{E}) + (r - \frac{1}{2}\sigma^{2})(T - t)}{\sigma\sqrt{T - t}} = d_{1} - \sigma\sqrt{T - t}$$

Answer the following questions:

- 1. Find $\Phi'(d_1)$.
- 2. Show that $S_0\Phi'(d_1) = \frac{E}{e^{r(T-t)}}\Phi'(d_2)$.
- 3. Find $\frac{\partial d_1}{\partial S}$ and $\frac{\partial d_2}{\partial S}$.
- 4. Show that

$$\frac{\partial C}{\partial t} = -rEe^{-r(T-t)}\Phi(d_2) - S_0\Phi'(d_1)\frac{\sigma}{2\sqrt{T-t}}.$$

- 5. Show that $\frac{\partial C}{\partial S} = \Phi(d_1)$.
- 6. Show that C satisfies the Black-Scholes-Merton differential equation.
- 7. Show that C satisfies the boundary conditions for a European call option, C = max[S-E, 0] as $t \to T$.

Exercise 2

Assume that a non-dividend-paying stock has an expected return of μ and volatility of σ . A financial institution has just announced that it will trade a security that pays off a dollar amount equal to $ln(S_T)$ at time T, where S_T denotes the value of the stock price at time T. Answer the following questions:

- a. Use risk-neutral valuation to calculate the price of the security at time t in terms of the stock price at time T.
- b. Confirm that your price satisfies the Black-Scholes-Merton differential equation.

Answers

1. Since $\Phi(d_i)$ is the cumulative probability that a standard normal random variable is less than d_1 , i.e.,

$$P(Z \le d_1) \text{ it follows that } \Phi'(d_1) = \frac{\partial \Phi(d_1)}{\partial d_1} = f(d_1) = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}d_1^2} = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}\left(\frac{\ln(\frac{S_0}{E}) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}\right)}.$$

2. Because

$$d_2 = \frac{ln(\frac{S_0}{E}) + (r - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}} = d_1 - \sigma\sqrt{T - t},$$

it follows that $d_1 = d_2 + \sigma \sqrt{T - t}$. Therefore,

$$\begin{split} \Phi'(d_1) &= \frac{\partial \Phi(d_1)}{\partial d_1} = f(d_1) = f(d_2 + \sigma \sqrt{T - t}) \\ &= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(d_2 + \sigma \sqrt{T - t})^2} = \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(d_2^2 + 2d_2\sigma \sqrt{T - t} + \sigma^2(T - t))} \\ &= \frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}d_2^2} \times e^{-d_2\sigma \sqrt{T - t} - \frac{1}{2}\sigma^2(T - t)} = \Phi'(d_2) \times e^{-\frac{1}{2}d_2^2} \times e^{-d_2\sigma \sqrt{T - t} - \frac{1}{2}\sigma^2(T - t)} \end{split}$$
 but

$$d_2 = \frac{ln(\frac{S_0}{E}) + (r - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$
, therefore

$$\Phi'(d_1) = \Phi'(d_2) \times e^{-\sigma \left[\frac{\ln(\frac{S_0}{E}) + (r - \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}\right]\sqrt{T - t} - \frac{1}{2}\sigma^2(T - t)}$$

$$= \Phi'(d_2) \times e^{-\ln\frac{S_0}{E} - r(T - t)} = \Phi'(d_2) \times e^{\ln\frac{E}{S_0} - r(T - t)}$$

$$= \Phi'(d_2) \times \frac{E}{S_0}e^{-r(T - t)}. \text{ It follows that}$$

$$S_0\Phi'(d_1) = Ee^{-r(T - t)}\Phi'(d_2).$$

3. Use
$$d_1 = \frac{\ln(\frac{S_0}{E}) + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$$
 and write it as $d_1 = \frac{\ln S_0 + \ln E + (r + \frac{1}{2}\sigma^2)(T - t)}{\sigma\sqrt{T - t}}$. Therefore, $\frac{\partial d_1}{\partial S} = \frac{1}{S\sigma\sqrt{T - t}}$. Similarly, because $d_2 = d_1 - \sigma\sqrt{T - t}$, it follows that $\frac{\partial d_2}{\partial S} = \frac{\partial d_1}{\partial S} = \frac{1}{S\sigma\sqrt{T - t}}$.

4. Use the B-S-M formula:

$$C = S_0\Phi(d_1) - \frac{E}{e^{r(T-t)}}\Phi(d_2)$$

$$\frac{\partial C}{\partial t} = S\Phi'(d_1)\frac{\partial d_1}{\partial t} - \frac{rE\Phi(d_2)}{e^{r(T-t)}} - \frac{E}{e^{r(T-t)}}\Phi'(d_2)\frac{\partial d_2}{\partial t}$$
From (2) $S_0\Phi'(d_1) = Ee^{-r(T-t)}\Phi'(d_2)$, therefore
$$\frac{\partial C}{\partial t} = S\Phi'(d_1)\frac{\partial d_1}{\partial t} - \frac{rE\Phi'(d_2)}{e^{r(T-t)}} - S\Phi'(d_1)\frac{\partial d_2}{\partial t}$$

$$= S\Phi'(d_1)(\frac{\partial d_1}{\partial t} - \frac{\partial d_2}{\partial t}) - \frac{rE\Phi'(d_2)}{e^{r(T-t)}}.$$
But $d_1 - d_2 = \sigma\sqrt{T-t}$, which means $\frac{\partial d_1}{\partial t} - \frac{\partial d_2}{\partial t} = -\frac{\sigma}{\sqrt{T-t}}.$
Finally, $\frac{\partial C}{\partial t} = -rEe^{-r(T-t)}\Phi(d_2) - S_0\Phi'(d_1)\frac{\sigma}{2\sqrt{T-t}}$, which is a decreasing function of t .

5. This is the hedge ratio $\frac{\partial C}{\partial S} = \Phi(d_1)$. Again, begin with the formula for C.

$$C = S_0\Phi(d_1) - \frac{E}{e^{r(T-t)}}\Phi(d_2)$$

$$\frac{\partial C}{\partial S} = \Phi(d_1) + S\Phi'(d_1)\frac{\partial d_1}{\partial S} - \frac{E}{e^{r(T-t)}}\Phi'(d_2)\frac{\partial d_2}{\partial S}$$
From (2) $S_0\Phi'(d_1) = \frac{E}{e^{r(T-t)}}\Phi'(d_2)$
From (3) $\frac{\partial d_1}{\partial S} = \frac{\partial d_2}{\partial S} = \frac{1}{S\sigma\sqrt{T-t}}$.
Therefore $\frac{\partial C}{\partial S} = \Phi(d_1) + \frac{E}{e^{r(T-t)}}\Phi'(d_2)\frac{1}{S\sigma\sqrt{T-t}} - \frac{E}{e^{r(T-t)}}\Phi'(d_2)\frac{1}{S\sigma\sqrt{T-t}} = \Phi(d_1)$.

6. C satisfies the B-S-M formula.

From (5) and (3) it follows that $\frac{\partial^2 C}{\partial S^2} = \Phi'(d_1) \frac{\partial d_1}{\partial S} = \Phi'(d_1) \frac{1}{S\sigma\sqrt{T-t}}$. Therefore,

$$\frac{\partial C}{\partial t} \text{ (from (3))} + rS \frac{\partial C}{\partial S} \text{ (from (5))} + \frac{1}{2} S^2 \frac{\partial^2 C}{\partial S^2} = rC.$$

7. Examine what happens as $t \to T$.

If S > E then $d_1 \to \infty$ and $d_2 \to \infty$ and therefore $\Phi(d_1) \to 1$ and $\Phi(d_2) \to 1$. In this case $C \to S - E$.

If S < E then $d_1 \to -\infty$ and $d_2 \to -\infty$ and therefore $\Phi(d_1) \to 0$ and $\Phi(d_2) \to 0$. Now, $C \to 0$.

We see that as $t \to T$, $C \to \max(S - E, 0)$.