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Exercise

From Options Futures and Other Derivatives by John Hull, Prentice Hall 6th Edition, 2006.

The Black-Scholes-Merton formula for the value C of a European call option at time ¢ and expiration time
at time T is given by

C = So®(d1) — ®(da)

er(T—t)
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Answer the following questions:
1. Find ®'(dy).
2. Show that Sy®'(d;) = erTE,t)‘I)’(dg).

ind 2d1 9dy.
3. Find 3¢ and 5o -

4. Show that
oC o
—— = rEe"TYd(dy) — So®' (dy) — .
ot ¢ (d2) = So®(d1) 5=

5. Show that 25 = ®(d,).
6. Show that C satisfies the Black-Scholes-Merton differential equation.
7. Show that C satisfies the boundary conditions for a European call option, C' = maz[S—E,0] ast — T.

Exercise 2

Assume that a non-dividend-paying stock has an expected return of p and volatility of o. A financial
institution has just announced that it will trade a security that pays off a dollar amount equal to in(St) at
time T, where St denotes the value of the stock price at time 7. Answer the following questions:

a. Use risk-neutral valuation to calculate the price of the security at time ¢ in terms of the stock price
at time T

b. Confirm that your price satisfies the Black-Scholes-Merton differential equation.



Answers

1. Since ®(d;) is the cumulative probability that a standard normal random variable is less than dy, i.e.,
L <ln<s,:9>+(r+§az)<Tt>
. —_— 2 o —t
P(Z < dy) it follows that ®'(d1) = 2541 = f(dy) = A-e 3% = —L¢ VT
2. Because
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it follows that d; = dy + o/T — t. Therefore,
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3. Use dy — ln(fo)JrU(r/J%z)(Tft) and write it as d; = lnSOHnEj\;%o )(T,t)'
Therefore, % = ﬁm Similarly, because do = d; —o/1 — t, it follows that % = % = #\/ﬁ

4. Use the B-S-M formula:
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Finally, 5
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5. This is the hedge ratio g—g = ®(dy). Again, begin with the formula for C.
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From (3) % =
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6. C satisfies the B-S-M formula.
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From (5) and (3) it follows that T -
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7. Examine what happens as t — 7.
If S > E then d; — oo and dy — oo and therefore ®(d;) — 1 and ®(dz) — 1.

In this case C — S — E.

@’(dl)% = @'(dl)ﬁ. Therefore,

1 ,0°C
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If S < E then dy — —o0 and d2 — —oo and therefore ®(d;) — 0 and ®(dz) — 0.

Now, C' — 0.

We see that as t = T, C — max(S — E,0).

= B(dy).



