University of California, Los Angeles Department of Statistics

Statistics C183/C283

Instructor: Nicolas Christou

Lower and upper bounds for the price of a European calls and puts

A. Lower bound for the price of a European call:

	Time $t = 0$	Payoff at time $t = 1$	
		$S_1 > E$	$S_1 \leq E$
Portfolio A:			
Buy 1 call	-C	$S_1 - E$	0
Cash (lend)	$-\frac{E}{1+r}$	+E	+E
Total		S_1	E
Portfolio B :			
Buy 1 share	$-S_0$	S_1	S_1

$$c \ge S_0 - \frac{E}{1+r}$$
 or $c \ge S_0 - Ee^{-rt}$.

If it doesn't hold then there is an opportunity for a riskless profit. Here is an example. Suppose $S_0 = $40, E = $38, r = 10\%$ per year, and time to expiration is t = 1 year. Then the lower bound is: $c \ge 40 - 38e^{-0.10 \times 1} = 5.62$.

Suppose there is a European call written on this stock with price c =\$5. It is cheaper! How can one make riskless profit?

- Short the stock

- Buy the call

Explain: How much is the cash inflow at t = 0? How much will it grow in 1 year?

At expiration (in 1 year): If stock price $S_T > 38$ then ... If stock price $S_T < 38$ then ...

B. Lower bound for the price of a European put:

	Time $t = 0$	Payoff at	Payoff at time $t = 1$	
		$S_1 \ge E$	$S_1 < E$	
Portfolio A:				
Buy 1 put	-P	0	$E-S_1$	
Buy 1 share	$-S_0$	S_1	S_1	
Total		S_1	E	
Portfolio B :				
Cash (lend)	$-\frac{E}{1+r}$	+E	+E	

 $p \ge \frac{E}{1+r} - S_0 \quad \text{or} \quad p \ge Ee^{-rt} - S_0$

If it doesn't hold then there is an opportunity for a riskless profit. Here is an example. Suppose $S_0 = $40, E = $43, r = 5\%$ per year, and time to expiration is t = 0.5 years. Then the lower bound is: $p \ge 43e^{-0.05 \times 0.5} - 40 = 1.94$.

Suppose there is a European put written on this stock with price p =1. It is cheaper! How can one make riskless profit?

- Borrow \$41
- Buy the put and the stock

Explain: At t = 0.5 must pay back the loan How much?

At expiration (in 6 months): Stock price $S_T < 43$ then ... Stock price $S_T > 43$ then ...

C. Upper bound for the price of a European call:

No matter what happens, $C \leq S_0$

If not, there will be an opportunity for a riskless profit by buying the stock and selling the call option. How? Suppose $C > S_0$.

	Time $t = 0$	Payoff at time $t = 1$	
		$S_1 > E$	$S_1 \leq E$
Sell 1 call	C	$E-S_1$	0
Buy 1 stock	$-S_0$	S_1	S_1
Total	$C - S_0$	E	S_1

D. Upper bound for the price of a European put:

No matter what happens, $P \leq \frac{E}{1+r}$. If not, there will be an opportunity for a riskless profit by selling the put and investing the proceeds at the risk free interest rate. How? Suppose $P > \frac{E}{1+r}$.

	Time $t = 0$	Payoff at time $t = 1$	
		$S_1 \ge E$	$S_1 < E$
Sell 1 put	$P > \frac{E}{1+r}$	0	$S_1 - E$

Put-call parity

This is an important relationship between the price of a put and the price of the call. A put and the underlying stock can be combined in such a way that they have the same payoff as a call at expiration. Consider the following two portfolios:

Portfolio A: Buy the call and lend an amount of cash equal to $\frac{E}{1+r}$. Portfolio B: Buy the stock, buy the put.

This is shown on the table below:

	Time $t = 0$	Payoff at t	time $t = 1$
		$S_1 > E$	$S_1 \leq E$
Portfolio A:			
Buy 1 call	-C	$S_1 - E$	0
Lend cash	$-\frac{E}{1+r}$	E	E
Total	$-C - \frac{E}{1+r}$	S_1	E

		$S_1 \ge E$	$S_1 < E$
Portfolio B :			
Buy 1 put	-P	0	$E-S_1$
Buy 1 stock	$-S_0$	S_1	S_1
Total	$-P-S_0$	S_1	E
$c + \frac{E}{1+r} = p + S_0$ or $c + Ee^{-rt} = p + S_0$.			

If it doesn't hold then there is an opportunity for a riskless profit. Here is an example. $S_0 = \$30, E = \$28, r = 10\%$ per year, and t = 3 months to expiration. Suppose c = \$4 and p = \$3.

Let's compute both sides of the put-call parity equation. $c + Ee^{-rt} = 4 + 28e^{-0.10 \times \frac{3}{12}} = \$31.31.$ $p + S_0 = 3 + 30 = \$33.$

The second portfolio is overpriced compared to the first portfolio. Therefore,

- Short the put and the stock
- Buy the call

Explain: How much is the cash inflow at t = 0? How much will it grow in 3 months?

At expiration (in 3 months): If stock price $S_T > 28$ then ... If stock price $S_T < 28$ then ...